Skip to main content
Springer Nature Link
Account
Menu
Find a journal Publish with us Track your research
Search
Cart
  1. Home
  2. Journal of High Energy Physics
  3. Article

Resolving the flavor structure in the MFV-SMEFT

  • Regular Article - Theoretical Physics
  • Open access
  • Published: 22 February 2023
  • Volume 2023, article number 225, (2023)
  • Cite this article
Download PDF

You have full access to this open access article

Journal of High Energy Physics Aims and scope Submit manuscript
Resolving the flavor structure in the MFV-SMEFT
Download PDF
  • Sebastian Bruggisser1,2,
  • Danny van Dyk3,4,5 &
  • Susanne Westhoff1,6,7 
  • 271 Accesses

  • 1 Altmetric

  • Explore all metrics

A preprint version of the article is available at arXiv.

Abstract

We constrain the flavor structure of Wilson coefficients in the Standard Model Effective Field Theory (SMEFT) from data. In the SMEFT, new physics effects in couplings of up-type and down-type quarks are related through the Cabibbo-Kobayashi-Maskawa mixing matrix. We exploit this relation to pin down potential new sources of flavor symmetry breaking in a global analysis of high- and low-energy data from the LHC, LEP, and b factory experiments. We demonstrate the power of such an analysis by performing a combined fit of effective four-quark and two-quark couplings contributing to a large set of flavor, top-quark, electroweak, and dijet observables. All four sectors are needed to fully resolve the flavor structure of left-chiral four-quark couplings without leaving blind directions in the parameter space. Although we work in the framework of minimal flavor violation, our strategy applies as well to other flavor patterns, like U(2) flavor symmetry or leptoquark scenarios.

Article PDF

Download to read the full article text

Similar content being viewed by others

New physics in the third generation. A comprehensive SMEFT analysis and future prospects

Article Open access 08 March 2024

Flavor from the electroweak scale

Article Open access 04 November 2015

Controlled flavor violation in the MSSM from a unified Δ(27) flavor symmetry

Article Open access 10 September 2018
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

References

  1. W. Buchmuller and D. Wyler, Effective Lagrangian analysis of new interactions and flavor conservation, Nucl. Phys. B 268 (1986) 621 [INSPIRE].

    Article  ADS  Google Scholar 

  2. B. Grzadkowski, M. Iskrzynski, M. Misiak and J. Rosiek, Dimension-six terms in the standard model Lagrangian, JHEP 10 (2010) 085 [arXiv:1008.4884] [INSPIRE].

    Article  MATH  ADS  Google Scholar 

  3. A. Buckley et al., Constraining top quark effective theory in the LHC run II era, JHEP 04 (2016) 015 [arXiv:1512.03360] [INSPIRE].

    ADS  Google Scholar 

  4. N.P. Hartland et al., A Monte Carlo global analysis of the standard model effective field theory: the top quark sector, JHEP 04 (2019) 100 [arXiv:1901.05965] [INSPIRE].

    Article  ADS  Google Scholar 

  5. I. Brivio et al., O new physics, where art thou? A global search in the top sector, JHEP 02 (2020) 131 [arXiv:1910.03606] [INSPIRE].

  6. A. Biekoetter, T. Corbett and T. Plehn, The gauge-Higgs legacy of the LHC run II, SciPost Phys. 6 (2019) 064 [arXiv:1812.07587] [INSPIRE].

    Article  ADS  Google Scholar 

  7. J. Ellis, C.W. Murphy, V. Sanz and T. You, Updated global SMEFT fit to Higgs, diboson and electroweak data, JHEP 06 (2018) 146 [arXiv:1803.03252] [INSPIRE].

    Article  ADS  Google Scholar 

  8. A. Falkowski and D. Straub, Flavourful SMEFT likelihood for Higgs and electroweak data, JHEP 04 (2020) 066 [arXiv:1911.07866] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  9. SMEFiT collaboration, Combined SMEFT interpretation of Higgs, diboson, and top quark data from the LHC, JHEP 11 (2021) 089 [arXiv:2105.00006] [INSPIRE].

  10. J. Brod, A. Greljo, E. Stamou and P. Uttayarat, Probing anomalous \( t\overline{t}Z \) interactions with rare meson decays, JHEP 02 (2015) 141 [arXiv:1408.0792] [INSPIRE].

    Article  ADS  Google Scholar 

  11. V. Cirigliano, W. Dekens, J. de Vries and E. Mereghetti, Constraining the top-Higgs sector of the standard model effective field theory, Phys. Rev. D 94 (2016) 034031 [arXiv:1605.04311] [INSPIRE].

  12. S. Alioli, V. Cirigliano, W. Dekens, J. de Vries and E. Mereghetti, Right-handed charged currents in the era of the Large Hadron Collider, JHEP 05 (2017) 086 [arXiv:1703.04751] [INSPIRE].

    Article  ADS  Google Scholar 

  13. J. Aebischer, J. Kumar, P. Stangl and D.M. Straub, A global likelihood for precision constraints and flavour anomalies, Eur. Phys. J. C 79 (2019) 509 [arXiv:1810.07698] [INSPIRE].

    Article  ADS  Google Scholar 

  14. S. Bißmann, J. Erdmann, C. Grunwald, G. Hiller and K. Kröninger, Constraining top-quark couplings combining top-quark and B decay observables, Eur. Phys. J. C 80 (2020) 136 [arXiv:1909.13632] [INSPIRE].

    Article  ADS  Google Scholar 

  15. S. Bißmann, C. Grunwald, G. Hiller and K. Kröninger, Top and beauty synergies in SMEFT-fits at present and future colliders, JHEP 06 (2021) 010 [arXiv:2012.10456] [INSPIRE].

    Article  ADS  Google Scholar 

  16. R. Aoude, T. Hurth, S. Renner and W. Shepherd, The impact of flavour data on global fits of the MFV SMEFT, JHEP 12 (2020) 113 [arXiv:2003.05432] [INSPIRE].

    Article  ADS  Google Scholar 

  17. S. Bruggisser, R. Schäfer, D. van Dyk and S. Westhoff, The flavor of UV physics, JHEP 05 (2021) 257 [arXiv:2101.07273] [INSPIRE].

    Article  ADS  Google Scholar 

  18. J. Talbert and M. Trott, Dirac masses and mixings in the (geo)SM(EFT) and beyond, JHEP 11 (2021) 009 [arXiv:2107.03951] [INSPIRE].

    Article  MathSciNet  MATH  ADS  Google Scholar 

  19. A.J. Buras, P. Gambino, M. Gorbahn, S. Jager and L. Silvestrini, Universal unitarity triangle and physics beyond the standard model, Phys. Lett. B 500 (2001) 161 [hep-ph/0007085] [INSPIRE].

  20. G. D’Ambrosio, G.F. Giudice, G. Isidori and A. Strumia, Minimal flavor violation: an effective field theory approach, Nucl. Phys. B 645 (2002) 155 [hep-ph/0207036] [INSPIRE].

  21. R. Barbieri, D. Buttazzo, F. Sala and D.M. Straub, Flavour physics from an approximate U(2)3 symmetry, JHEP 07 (2012) 181 [arXiv:1203.4218] [INSPIRE].

    Article  ADS  Google Scholar 

  22. D.A. Faroughy, G. Isidori, F. Wilsch and K. Yamamoto, Flavour symmetries in the SMEFT, JHEP 08 (2020) 166 [arXiv:2005.05366] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  23. A. Greljo, A. Palavrić and A.E. Thomsen, Adding flavor to the SMEFT, JHEP 10 (2022) 010 [arXiv:2203.09561] [INSPIRE].

    Article  MATH  ADS  Google Scholar 

  24. D. Egana-Ugrinovic, S. Homiller and P. Meade, Aligned and spontaneous flavor violation, Phys. Rev. Lett. 123 (2019) 031802 [arXiv:1811.00017] [INSPIRE].

  25. C.D. Froggatt and H.B. Nielsen, Hierarchy of quark masses, Cabibbo angles and CP violation, Nucl. Phys. B 147 (1979) 277 [INSPIRE].

    Article  ADS  Google Scholar 

  26. M. Bordone, O. Catà and T. Feldmann, Effective theory approach to new physics with flavour: general framework and a leptoquark example, JHEP 01 (2020) 067 [arXiv:1910.02641] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  27. M. Bordone, O. Catà, T. Feldmann and R. Mandal, Constraining flavour patterns of scalar leptoquarks in the effective field theory, JHEP 03 (2021) 122 [arXiv:2010.03297] [INSPIRE].

    Article  ADS  Google Scholar 

  28. A. Efrati, A. Falkowski and Y. Soreq, Electroweak constraints on flavorful effective theories, JHEP 07 (2015) 018 [arXiv:1503.07872] [INSPIRE].

    Article  ADS  Google Scholar 

  29. R. Alonso, E.E. Jenkins, A.V. Manohar and M. Trott, Renormalization group evolution of the standard model dimension six operators. Part III. Gauge coupling dependence and phenomenology, JHEP 04 (2014) 159 [arXiv:1312.2014] [INSPIRE].

  30. D. Barducci et al., Interpreting top-quark LHC measurements in the standard-model effective field theory, Tech. Rep. CERN-LPCC-2018-01, CERN, Geneva, Switzerland (2018) [arXiv:1802.07237] [INSPIRE].

  31. J. Fuentes-Martin, P. Ruiz-Femenia, A. Vicente and J. Virto, DsixTools 2.0: the effective field theory toolkit, Eur. Phys. J. C 81 (2021) 167 [arXiv:2010.16341] [INSPIRE].

    Article  ADS  Google Scholar 

  32. J. Aebischer et al., WCxf: an exchange format for Wilson coefficients beyond the standard model, Comput. Phys. Commun. 232 (2018) 71 [arXiv:1712.05298] [INSPIRE].

    Article  MATH  ADS  Google Scholar 

  33. C.S. Machado, S. Renner and D. Sutherland, Building blocks of the flavourful SMEFT RG, Tech. Rep. DESY-22-161 (2022) [arXiv:2210.09316] [INSPIRE].

  34. J. Aebischer, M. Fael, C. Greub and J. Virto, B physics beyond the standard model at one loop: complete renormalization group evolution below the electroweak scale, JHEP 09 (2017) 158 [arXiv:1704.06639] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  35. E.E. Jenkins, A.V. Manohar and P. Stoffer, Low-energy effective field theory below the electroweak scale: operators and matching, JHEP 03 (2018) 016 [arXiv:1709.04486] [INSPIRE].

    Article  MATH  ADS  Google Scholar 

  36. J. Aebischer, A. Crivellin, M. Fael and C. Greub, Matching of gauge invariant dimension-six operators for b → s and b → c transitions, JHEP 05 (2016) 037 [arXiv:1512.02830] [INSPIRE].

    Article  ADS  Google Scholar 

  37. W. Dekens and P. Stoffer, Low-energy effective field theory below the electroweak scale: matching at one loop, JHEP 10 (2019) 197 [Erratum ibid. 11 (2022) 148] [arXiv:1908.05295] [INSPIRE].

  38. J. Aebischer, J. Kumar and D.M. Straub, Wilson: a Python package for the running and matching of Wilson coefficients above and below the electroweak scale, Eur. Phys. J. C 78 (2018) 1026 [arXiv:1804.05033] [INSPIRE].

    Article  ADS  Google Scholar 

  39. EOS Authors collaboration, EOS: a software for flavor physics phenomenology, Eur. Phys. J. C 82 (2022) 569 [arXiv:2111.15428] [INSPIRE].

  40. CLEO collaboration, Branching fraction and photon energy spectrum for b → sγ, Phys. Rev. Lett. 87 (2001) 251807 [hep-ex/0108032] [INSPIRE].

  41. BaBar collaboration, Measurement of the B → Xsγ branching fraction and photon energy spectrum using the recoil method, Phys. Rev. D 77 (2008) 051103 [arXiv:0711.4889] [INSPIRE].

  42. Belle collaboration, Measurement of inclusive radiative B-meson decays with a photon energy threshold of 1.7 GeV, Phys. Rev. Lett. 103 (2009) 241801 [arXiv:0907.1384] [INSPIRE].

  43. BaBar collaboration, Precision measurement of the B → Xsγ photon energy spectrum, branching fraction, and direct CP asymmetry ACP(B → Xs+dγ), Phys. Rev. Lett. 109 (2012) 191801 [arXiv:1207.2690] [INSPIRE].

  44. BaBar collaboration, Exclusive measurements of b → sγ transition rate and photon energy spectrum, Phys. Rev. D 86 (2012) 052012 [arXiv:1207.2520] [INSPIRE].

  45. Belle collaboration, Measurement of the \( \overline{B}\to {X}_s\gamma \) branching fraction with a sum of exclusive decays, Phys. Rev. D 91 (2015) 052004 [arXiv:1411.7198] [INSPIRE].

  46. HFLAV collaboration, Averages of b-hadron, c-hadron, and τ-lepton properties as of 2018, Eur. Phys. J. C 81 (2021) 226 [arXiv:1909.12524] [INSPIRE].

  47. Particle Data Group collaboration, Review of particle physics, PTEP 2020 (2020) 083C01 [INSPIRE].

  48. LHCb collaboration, Measurement of the \( {B}_s^0\to {\mu}^{+}{\mu}^{-} \) branching fraction and effective lifetime and search for B0 → μ+μ− decays, Phys. Rev. Lett. 118 (2017) 191801 [arXiv:1703.05747] [INSPIRE].

  49. ATLAS collaboration, Study of the rare decays of \( {B}_s^0 \) and B0 mesons into muon pairs using data collected during 2015 and 2016 with the ATLAS detector, JHEP 04 (2019) 098 [arXiv:1812.03017] [INSPIRE].

  50. CMS collaboration, Measurement of properties of \( {B}_s^0 \) → μ+μ− decays and search for B0 → μ+μ− with the CMS experiment, JHEP 04 (2020) 188 [arXiv:1910.12127] [INSPIRE].

  51. LHCb, ATLAS and CMS collaborations, Combination of the ATLAS, CMS and LHCb results on the \( {B}_{(s)}^0 \) → μ+μ− decays, CERN-LHCb-CONF-2020-002, CERN, Geneva, Switzerland (2020) [INSPIRE].

  52. I. Brivio, S. Bruggisser, N. Elmer, E. Geoffray, M. Luchmann and T. Plehn, To profile or to marginalize — a SMEFT case study, arXiv:2208.08454 [INSPIRE].

  53. CDF collaboration, Observation of \( {B}_s^0-{\overline{B}}_s^0 \) oscillations, Phys. Rev. Lett. 97 (2006) 242003 [hep-ex/0609040] [INSPIRE].

  54. LHCb collaboration, Measurement of the \( {B}_s^0 \)-\( {\overline{B}}_s^0 \) oscillation frequency ∆ms in \( {B}_s^0\to {D}_s^{-}(3)\pi \) decays, Phys. Lett. B 709 (2012) 177 [arXiv:1112.4311] [INSPIRE].

  55. LHCb collaboration, Observation of \( {B}_s^0 \)-\( {\overline{B}}_s^0 \) mixing and measurement of mixing frequencies using semileptonic B decays, Eur. Phys. J. C 73 (2013) 2655 [arXiv:1308.1302] [INSPIRE].

  56. LHCb collaboration, Precision measurement of the \( {B}_s^0 \)-\( {\overline{B}}_s^0 \) oscillation frequency with the decay \( {B}_s^0\to {D}_s^{-}{\pi}^{+} \), New J. Phys. 15 (2013) 053021 [arXiv:1304.4741] [INSPIRE].

  57. LHCb collaboration, Updated measurement of time-dependent CP-violating observables in \( {B}_s^0\to J/\psi {K}^{+}{K}^{-} \) decays, Eur. Phys. J. C 79 (2019) 706 [Erratum ibid. 80 (2020) 601] [arXiv:1906.08356] [INSPIRE].

  58. CMS collaboration, Measurement of the CP-violating phase ϕs in the \( {B}_{\textrm{s}}^0\to J/\psi \phi (1020)\to {\mu}^{+}{\mu}^{-}{K}^{+}{K}^{-} \) channel in proton-proton collisions at \( \sqrt{s} \) = 13 TeV, Phys. Lett. B 816 (2021) 136188 [arXiv:2007.02434] [INSPIRE].

  59. LHCb collaboration, Measurement of the CKM angle γ and \( {B}_s^0 \)-\( {\overline{B}}_s^0 \) mixing frequency with \( {B}_s^0\to {D}_s^{\mp }{h}^{\pm }{\pi}^{\pm }{\pi}^{\mp } \) decays, JHEP 03 (2021) 137 [arXiv:2011.12041] [INSPIRE].

  60. LHCb collaboration, Precise determination of the \( {B}_{\textrm{s}}^0 \)-\( {\overline{B}}_{\textrm{s}}^0 \) oscillation frequency, Nature Phys. 18 (2022) 1 [arXiv:2104.04421] [INSPIRE].

  61. R.J. Dowdall et al., Neutral B-meson mixing from full lattice QCD at the physical point, Phys. Rev. D 100 (2019) 094508 [arXiv:1907.01025] [INSPIRE].

  62. A. Bazavov et al., B- and D-meson leptonic decay constants from four-flavor lattice QCD, Phys. Rev. D 98 (2018) 074512 [arXiv:1712.09262] [INSPIRE].

  63. A.J. Buras, S. Jager and J. Urban, Master formulae for ∆F = 2 NLO QCD factors in the standard model and beyond, Nucl. Phys. B 605 (2001) 600 [hep-ph/0102316] [INSPIRE].

  64. M. Endo, T. Kitahara and D. Ueda, SMEFT top-quark effects on ∆F = 2 observables, JHEP 07 (2019) 182 [arXiv:1811.04961] [INSPIRE].

    Article  ADS  Google Scholar 

  65. J. Aebischer, C. Bobeth, A.J. Buras and J. Kumar, SMEFT ATLAS of ∆F = 2 transitions, JHEP 12 (2020) 187 [arXiv:2009.07276] [INSPIRE].

    ADS  Google Scholar 

  66. CMS collaboration, Search for production of four top quarks in final states with same-sign or multiple leptons in proton-proton collisions at \( \sqrt{s} \) = 13 TeV, Eur. Phys. J. C 80 (2020) 75 [arXiv:1908.06463] [INSPIRE].

  67. ATLAS collaboration, Evidence for \( t\overline{t}t\overline{t} \) production in the multilepton final state in proton-proton collisions at \( \sqrt{s} \) = 13 TeV with the ATLAS detector, Eur. Phys. J. C 80 (2020) 1085 [arXiv:2007.14858] [INSPIRE].

  68. ATLAS collaboration, Measurement of the \( t\overline{t}t\overline{t} \) production cross section in pp collisions at \( \sqrt{s} \) = 13 TeV with the ATLAS detector, JHEP 11 (2021) 118 [arXiv:2106.11683] [INSPIRE].

  69. R. Aoude, H. El Faham, F. Maltoni and E. Vryonidou, Complete SMEFT predictions for four top quark production at hadron colliders, JHEP 10 (2022) 163 [arXiv:2208.04962] [INSPIRE].

    Article  ADS  Google Scholar 

  70. C. Degrande, G. Durieux, F. Maltoni, K. Mimasu, E. Vryonidou and C. Zhang, Automated one-loop computations in the standard model effective field theory, Phys. Rev. D 103 (2021) 096024 [arXiv:2008.11743] [INSPIRE].

  71. CMS collaboration, Measurement of the cross section for \( t\overline{t} \) production with additional jets and b jets in pp collisions at \( \sqrt{s} \) = 13 TeV, JHEP 07 (2020) 125 [arXiv:2003.06467] [INSPIRE].

  72. R. Barbieri and A. Strumia, What is the limit on the Higgs mass?, Phys. Lett. B 462 (1999) 144 [hep-ph/9905281] [INSPIRE].

  73. A. Pomarol and F. Riva, Towards the ultimate SM fit to close in on Higgs physics, JHEP 01 (2014) 151 [arXiv:1308.2803] [INSPIRE].

    Article  ADS  Google Scholar 

  74. A. Falkowski and F. Riva, Model-independent precision constraints on dimension-6 operators, JHEP 02 (2015) 039 [arXiv:1411.0669] [INSPIRE].

    Article  ADS  Google Scholar 

  75. C. Hartmann, W. Shepherd and M. Trott, The Z decay width in the SMEFT: yt and λ corrections at one loop, JHEP 03 (2017) 060 [arXiv:1611.09879] [INSPIRE].

    Article  ADS  Google Scholar 

  76. S. Dawson and P.P. Giardino, Electroweak and QCD corrections to Z and W pole observables in the standard model EFT, Phys. Rev. D 101 (2020) 013001 [arXiv:1909.02000] [INSPIRE].

  77. S. Dawson and P.P. Giardino, Flavorful electroweak precision observables in the standard model effective field theory, Phys. Rev. D 105 (2022) 073006 [arXiv:2201.09887] [INSPIRE].

  78. Z. Han, Electroweak constraints on effective theories with U(2) × U(1) flavor symmetry, Phys. Rev. D 73 (2006) 015005 [hep-ph/0510125] [INSPIRE].

  79. Y. Liu, Y. Wang, C. Zhang, L. Zhang and J. Gu, Probing top-quark operators with precision electroweak measurements, Chin. Phys. C 46 (2022) 113105 [arXiv:2205.05655] [INSPIRE].

  80. FlaviaNet Working Group on Kaon Decays collaboration, An evaluation of |Vus| and precise tests of the standard model from world data on leptonic and semileptonic kaon decays, Eur. Phys. J. C 69 (2010) 399 [arXiv:1005.2323] [INSPIRE].

  81. ALEPH, DELPHI, L3, OPAL, SLD, LEP Electroweak Working Group, SLD Electroweak Group and SLD Heavy Flavour Group collaborations, Precision electroweak measurements on the Z resonance, Phys. Rept. 427 (2006) 257 [hep-ex/0509008] [INSPIRE].

  82. Y. Bai, J.L. Hewett, J. Kaplan and T.G. Rizzo, LHC predictions from a Tevatron anomaly in the top quark forward-backward asymmetry, JHEP 03 (2011) 003 [arXiv:1101.5203] [INSPIRE].

    Article  ADS  Google Scholar 

  83. U. Haisch and S. Westhoff, Massive color-octet bosons: bounds on effects in top-quark pair production, JHEP 08 (2011) 088 [arXiv:1106.0529] [INSPIRE].

    Article  ADS  Google Scholar 

  84. S. Alte, M. König and W. Shepherd, Consistent searches for SMEFT effects in non-resonant dijet events, JHEP 01 (2018) 094 [arXiv:1711.07484] [INSPIRE].

    Article  ADS  Google Scholar 

  85. CMS collaboration, Search for new physics in dijet angular distributions using proton-proton collisions at \( \sqrt{s} \) = 13 TeV and constraints on dark matter and other models, Eur. Phys. J. C 78 (2018) 789 [Erratum ibid. 82 (2022) 379] [arXiv:1803.08030] [INSPIRE].

  86. J. Alwall et al., The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations, JHEP 07 (2014) 079 [arXiv:1405.0301] [INSPIRE].

    Article  ADS  Google Scholar 

  87. R. Lafaye, T. Plehn and D. Zerwas, SFITTER: SUSY parameter analysis at LHC and LC, Tech. Rep. LAPP-EXP-2004-03 (2004) [hep-ph/0404282] [INSPIRE].

  88. R. Lafaye, T. Plehn, M. Rauch and D. Zerwas, Measuring supersymmetry, Eur. Phys. J. C 54 (2008) 617 [arXiv:0709.3985] [INSPIRE].

    Article  ADS  Google Scholar 

  89. R. Lafaye, T. Plehn, M. Rauch, D. Zerwas and M. Duhrssen, Measuring the Higgs sector, JHEP 08 (2009) 009 [arXiv:0904.3866] [INSPIRE].

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Institute for Theoretical Physics, Heidelberg University, 69120, Heidelberg, Germany

    Sebastian Bruggisser & Susanne Westhoff

  2. Department of Physics and Astronomy, Uppsala University, 75120, Uppsala, Sweden

    Sebastian Bruggisser

  3. Physik Department T31, Technische Universität München, 85748, Garching, Germany

    Danny van Dyk

  4. Institute for Particle Physics Phenomenology, Durham University, Durham, DH1 3LE, UK

    Danny van Dyk

  5. Department of Physics, Durham University, Durham, DH1 3LE, UK

    Danny van Dyk

  6. Institute for Mathematics, Astrophysics and Particle Physics, Radboud University, 6500 GL, Nijmegen, The Netherlands

    Susanne Westhoff

  7. Nikhef, Science Park 105, 1098 XG, Amsterdam, The Netherlands

    Susanne Westhoff

Authors
  1. Sebastian Bruggisser
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Danny van Dyk
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Susanne Westhoff
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Susanne Westhoff.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

ArXiv ePrint: 2212.02532

Rights and permissions

Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bruggisser, S., van Dyk, D. & Westhoff, S. Resolving the flavor structure in the MFV-SMEFT. J. High Energ. Phys. 2023, 225 (2023). https://doi.org/10.1007/JHEP02(2023)225

Download citation

  • Received: 19 December 2022

  • Revised: 09 February 2023

  • Accepted: 12 February 2023

  • Published: 22 February 2023

  • DOI: https://doi.org/10.1007/JHEP02(2023)225

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Flavour Symmetries
  • SMEFT
  • Rare Decays
  • Top Quark
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us
  • Track your research

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Journal finder
  • Publish your research
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our imprints

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support
  • Cancel contracts here

Not affiliated

Springer Nature

© 2025 Springer Nature