Skip to main content

Advertisement

SpringerLink
  1. Home
  2. Journal of High Energy Physics
  3. Article
Drell-Yan production in third-generation gauge vector leptoquark models at NLO+PS in QCD
Download PDF
Your article has downloaded

Similar articles being viewed by others

Slider with three articles shown per slide. Use the Previous and Next buttons to navigate the slides or the slide controller buttons at the end to navigate through each slide.

On Drell-Yan production of scalar leptoquarks coupling to heavy-quark flavours

18 November 2022

Ulrich Haisch, Luc Schnell & Stefan Schulte

Fiducial Higgs and Drell-Yan distributions at N3LL′+NNLO with RadISH

17 September 2021

Emanuele Re, Luca Rottoli & Paolo Torrielli

Leptoquark toolbox for precision collider studies

21 May 2018

Ilja Doršner & Admir Greljo

Enhancing the Large Hadron Collider sensitivity to charged and neutral broad resonances of new gauge sectors

22 February 2022

J. Fiaschi, F. Giuli, … S. Moretti

Four-lepton production in gluon fusion at NLO matched to parton showers

03 August 2021

Simone Alioli, Silvia Ferrario Ravasio, … Raoul Röntsch

Inclusive production cross sections at N3LO

13 December 2022

Julien Baglio, Claude Duhr, … Robert Szafron

Resonant third-generation leptoquark signatures at the Large Hadron Collider

07 May 2021

Ulrich Haisch & Giacomo Polesello

Lepton-pair production in association with a b b ¯ $$ b\overline{b} $$ pair and the determination of the W boson mass

16 July 2018

Emanuele Bagnaschi, Fabio Maltoni, … Marco Zaro

Diboson at the LHC vs LEP

05 March 2019

Christophe Grojean, Marc Montull & Marc Riembau

Download PDF
  • Regular Article - Theoretical Physics
  • Open Access
  • Published: 07 February 2023

Drell-Yan production in third-generation gauge vector leptoquark models at NLO+PS in QCD

  • Ulrich Haisch1,
  • Luc Schnell  ORCID: orcid.org/0000-0003-2073-98171,2 &
  • Stefan Schulte1,2 

Journal of High Energy Physics volume 2023, Article number: 70 (2023) Cite this article

  • 39 Accesses

  • 1 Altmetric

  • Metrics details

A preprint version of the article is available at arXiv.

Abstract

Motivated by the long-standing hints of lepton-flavour non-universality in the b → cℓν and b → sℓ+ℓ− channels, we study Drell-Yan ditau production at the Large Hadron Collider (LHC). In the context of models with third-generation gauge vector leptoquarks (LQs), we calculate the complete \( \mathcal{O} \)(αs) corrections to the pp → τ+τ− process, achieving next-to-leading order (NLO) plus parton shower (NLO+PS) accuracy using the POWHEG method. We provide a dedicated Monte Carlo code that evaluates the NLO QCD corrections on-the-fly in the event generation and use it to study the numerical impact of NLO+PS corrections on the kinematic distributions that enter the existing experimental searches for non-resonant ditau final states. Based on our phenomenological analysis we derive NLO accurate constraints on the masses and couplings of third-generation gauge vector LQs using the latest LHC ditau search results corresponding to an integrated luminosity of around 140 fb−1 of proton-proton collisions at \( \sqrt{s} \) = 13 TeV. The presented NLO+PS generator allows for an improved signal modelling, making it an essential tool for future ATLAS and CMS searches for vector LQs in τ+τ− final states at LHC Run III and beyond.

Download to read the full article text

Working on a manuscript?

Avoid the most common mistakes and prepare your manuscript for journal editors.

Learn more

References

  1. BaBar collaboration, Evidence for an excess of \( \overline{B} \) → D(*)τ−\( \overline{\nu} \)τ decays, Phys. Rev. Lett. 109 (2012) 101802 [arXiv:1205.5442] [INSPIRE].

  2. BaBar collaboration, Measurement of an Excess of \( \overline{B} \) → D(*)τ−\( \overline{\nu} \)τ Decays and Implications for Charged Higgs Bosons, Phys. Rev. D 88 (2013) 072012 [arXiv:1303.0571] [INSPIRE].

  3. LHCb collaboration, Measurement of the ratio of branching fractions \( \mathcal{B}\left({\overline{B}}^0\to {D}^{\ast +}{\tau}^{-}{\overline{\nu}}_{\tau}\right)/\mathcal{B}\left({\overline{B}}^0\to {D}^{\ast +}{\mu}^{-}{\overline{\nu}}_{\mu}\right) \), Phys. Rev. Lett. 115 (2015) 111803 [arXiv:1506.08614] [INSPIRE].

  4. LHCb collaboration, Measurement of the ratio of the B0 → D*−τ+ντ and B0 → D*−μ+νμ branching fractions using three-prong τ-lepton decays, Phys. Rev. Lett. 120 (2018) 171802 [arXiv:1708.08856] [INSPIRE].

  5. LHCb collaboration, Test of Lepton Flavor Universality by the measurement of the B0 → D*−τ+ντ branching fraction using three-prong τ decays, Phys. Rev. D 97 (2018) 072013 [arXiv:1711.02505] [INSPIRE].

  6. Belle collaboration, Measurement of \( \mathcal{R} \)(D) and \( \mathcal{R} \)(D*) with a semileptonic tagging method, arXiv:1904.08794 [INSPIRE].

  7. LHCb collaboration, Test of lepton universality with B0 → K*0ℓ+ℓ− decays, JHEP 08 (2017) 055 [arXiv:1705.05802] [INSPIRE].

  8. LHCb collaboration, Search for lepton-universality violation in B+ → K+ℓ+ℓ− decays, Phys. Rev. Lett. 122 (2019) 191801 [arXiv:1903.09252] [INSPIRE].

  9. Belle collaboration, Test of Lepton-Flavor Universality in B → K*ℓ+ℓ− Decays at Belle, Phys. Rev. Lett. 126 (2021) 161801 [arXiv:1904.02440] [INSPIRE].

  10. BELLE collaboration, Test of lepton flavor universality and search for lepton flavor violation in B → Kℓℓ decays, JHEP 03 (2021) 105 [arXiv:1908.01848] [INSPIRE].

  11. LHCb collaboration, Test of lepton universality in beauty-quark decays, Nature Phys. 18 (2022) 277 [arXiv:2103.11769] [INSPIRE].

  12. R. Alonso, B. Grinstein and J. Martin Camalich, Lepton universality violation and lepton flavor conservation in B-meson decays, JHEP 10 (2015) 184 [arXiv:1505.05164] [INSPIRE].

    Article  ADS  Google Scholar 

  13. L. Calibbi, A. Crivellin and T. Ota, Effective Field Theory Approach to b → sℓℓ(′), B → K(*)\( \nu \overline{\nu} \) and B → D(*)τν with Third Generation Couplings, Phys. Rev. Lett. 115 (2015) 181801 [arXiv:1506.02661] [INSPIRE].

  14. S. Fajfer and N. Košnik, Vector leptoquark resolution of RK and \( {R}_{D^{\left(\ast \right)}} \) puzzles, Phys. Lett. B 755 (2016) 270 [arXiv:1511.06024] [INSPIRE].

  15. R. Barbieri, G. Isidori, A. Pattori and F. Senia, Anomalies in B-decays and U(2) flavour symmetry, Eur. Phys. J. C 76 (2016) 67 [arXiv:1512.01560] [INSPIRE].

    Article  ADS  Google Scholar 

  16. G. Hiller, D. Loose and K. Schönwald, Leptoquark Flavor Patterns & B Decay Anomalies, JHEP 12 (2016) 027 [arXiv:1609.08895] [INSPIRE].

    Article  ADS  Google Scholar 

  17. B. Bhattacharya, A. Datta, J.-P. Guévin, D. London and R. Watanabe, Simultaneous Explanation of the RK and \( {R}_{D^{\left(\ast \right)}} \) Puzzles: a Model Analysis, JHEP 01 (2017) 015 [arXiv:1609.09078] [INSPIRE].

  18. R. Barbieri, C.W. Murphy and F. Senia, B-decay Anomalies in a Composite Leptoquark Model, Eur. Phys. J. C 77 (2017) 8 [arXiv:1611.04930] [INSPIRE].

    Article  ADS  Google Scholar 

  19. D. Buttazzo, A. Greljo, G. Isidori and D. Marzocca, B-physics anomalies: a guide to combined explanations, JHEP 11 (2017) 044 [arXiv:1706.07808] [INSPIRE].

    Article  ADS  Google Scholar 

  20. N. Assad, B. Fornal and B. Grinstein, Baryon Number and Lepton Universality Violation in Leptoquark and Diquark Models, Phys. Lett. B 777 (2018) 324 [arXiv:1708.06350] [INSPIRE].

    Article  ADS  Google Scholar 

  21. L. Di Luzio, A. Greljo and M. Nardecchia, Gauge leptoquark as the origin of B-physics anomalies, Phys. Rev. D 96 (2017) 115011 [arXiv:1708.08450] [INSPIRE].

  22. L. Calibbi, A. Crivellin and T. Li, Model of vector leptoquarks in view of the B-physics anomalies, Phys. Rev. D 98 (2018) 115002 [arXiv:1709.00692] [INSPIRE].

  23. M. Bordone, C. Cornella, J. Fuentes-Martín and G. Isidori, A three-site gauge model for flavor hierarchies and flavor anomalies, Phys. Lett. B 779 (2018) 317 [arXiv:1712.01368] [INSPIRE].

    Article  ADS  Google Scholar 

  24. R. Barbieri and A. Tesi, B-decay anomalies in Pati-Salam SU(4), Eur. Phys. J. C 78 (2018) 193 [arXiv:1712.06844] [INSPIRE].

    Article  ADS  Google Scholar 

  25. M. Blanke and A. Crivellin, B Meson Anomalies in a Pati-Salam Model within the Randall-Sundrum Background, Phys. Rev. Lett. 121 (2018) 011801 [arXiv:1801.07256] [INSPIRE].

  26. A. Greljo and B.A. Stefanek, Third family quark-lepton unification at the TeV scale, Phys. Lett. B 782 (2018) 131 [arXiv:1802.04274] [INSPIRE].

    Article  ADS  Google Scholar 

  27. M. Bordone, C. Cornella, J. Fuentes-Martín and G. Isidori, Low-energy signatures of the PS3 model: from B-physics anomalies to LFV, JHEP 10 (2018) 148 [arXiv:1805.09328] [INSPIRE].

    Article  ADS  Google Scholar 

  28. J. Kumar, D. London and R. Watanabe, Combined Explanations of the b → sμ+μ− and b → cτ−\( \overline{\nu} \) Anomalies: a General Model Analysis, Phys. Rev. D 99 (2019) 015007 [arXiv:1806.07403] [INSPIRE].

  29. A. Azatov, D. Barducci, D. Ghosh, D. Marzocca and L. Ubaldi, Combined explanations of B-physics anomalies: the sterile neutrino solution, JHEP 10 (2018) 092 [arXiv:1807.10745] [INSPIRE].

    Article  ADS  Google Scholar 

  30. L. Di Luzio, J. Fuentes-Martín, A. Greljo, M. Nardecchia and S. Renner, Maximal Flavour Violation: a Cabibbo mechanism for leptoquarks, JHEP 11 (2018) 081 [arXiv:1808.00942] [INSPIRE].

    Article  Google Scholar 

  31. A. Angelescu, D. Bečirević, D.A. Faroughy and O. Sumensari, Closing the window on single leptoquark solutions to the B-physics anomalies, JHEP 10 (2018) 183 [arXiv:1808.08179] [INSPIRE].

    Article  ADS  Google Scholar 

  32. M. Schmaltz and Y.-M. Zhong, The leptoquark Hunter’s guide: large coupling, JHEP 01 (2019) 132 [arXiv:1810.10017] [INSPIRE].

    Article  ADS  Google Scholar 

  33. B. Fornal, S.A. Gadam and B. Grinstein, Left-Right SU(4) Vector Leptoquark Model for Flavor Anomalies, Phys. Rev. D 99 (2019) 055025 [arXiv:1812.01603] [INSPIRE].

  34. J. Aebischer, W. Altmannshofer, D. Guadagnoli, M. Reboud, P. Stangl and D.M. Straub, B-decay discrepancies after Moriond 2019, Eur. Phys. J. C 80 (2020) 252 [arXiv:1903.10434] [INSPIRE].

    Article  ADS  Google Scholar 

  35. C. Cornella, J. Fuentes-Martín and G. Isidori, Revisiting the vector leptoquark explanation of the B-physics anomalies, JHEP 07 (2019) 168 [arXiv:1903.11517] [INSPIRE].

    Article  ADS  Google Scholar 

  36. R.-X. Shi, L.-S. Geng, B. Grinstein, S. Jäger and J. Martin Camalich, Revisiting the new-physics interpretation of the b → cτν data, JHEP 12 (2019) 065 [arXiv:1905.08498] [INSPIRE].

    Article  ADS  Google Scholar 

  37. L. Da Rold and F. Lamagna, A vector leptoquark for the B-physics anomalies from a composite GUT, JHEP 12 (2019) 112 [arXiv:1906.11666] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  38. M. Bordone, O. Catà and T. Feldmann, Effective Theory Approach to New Physics with Flavour: General Framework and a Leptoquark Example, JHEP 01 (2020) 067 [arXiv:1910.02641] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  39. A. Crivellin, D. Müller and F. Saturnino, Flavor Phenomenology of the Leptoquark Singlet-Triplet Model, JHEP 06 (2020) 020 [arXiv:1912.04224] [INSPIRE].

    Article  ADS  Google Scholar 

  40. W. Altmannshofer, S. Gori, H.H. Patel, S. Profumo and D. Tuckler, Electric dipole moments in a leptoquark scenario for the B-physics anomalies, JHEP 05 (2020) 069 [arXiv:2002.01400] [INSPIRE].

    Article  ADS  Google Scholar 

  41. J. Fuentes-Martín and P. Stangl, Third-family quark-lepton unification with a fundamental composite Higgs, Phys. Lett. B 811 (2020) 135953 [arXiv:2004.11376] [INSPIRE].

  42. D. Guadagnoli, M. Reboud and P. Stangl, The Dark Side of 4321, JHEP 10 (2020) 084 [arXiv:2005.10117] [INSPIRE].

    Article  ADS  Google Scholar 

  43. S. Iguro, M. Takeuchi and R. Watanabe, Testing leptoquark/EFT in \( \overline{B} \) → D(*)\( l\overline{\nu} \) at the LHC, Eur. Phys. J. C 81 (2021) 406 [arXiv:2011.02486] [INSPIRE].

  44. J. Alda, J. Guasch and S. Penaranda, Anomalies in B mesons decays: a phenomenological approach, Eur. Phys. J. Plus 137 (2022) 217 [arXiv:2012.14799] [INSPIRE].

    Article  Google Scholar 

  45. A. Bhaskar, D. Das, T. Mandal, S. Mitra and C. Neeraj, Precise limits on the charge-2/3 U1 vector leptoquark, Phys. Rev. D 104 (2021) 035016 [arXiv:2101.12069] [INSPIRE].

  46. S. Iguro, J. Kawamura, S. Okawa and Y. Omura, TeV-scale vector leptoquark from Pati-Salam unification with vectorlike families, Phys. Rev. D 104 (2021) 075008 [arXiv:2103.11889] [INSPIRE].

  47. A. Angelescu, D. Bečirević, D.A. Faroughy, F. Jaffredo and O. Sumensari, Single leptoquark solutions to the B-physics anomalies, Phys. Rev. D 104 (2021) 055017 [arXiv:2103.12504] [INSPIRE].

  48. C. Cornella, D.A. Faroughy, J. Fuentes-Martín, G. Isidori and M. Neubert, Reading the footprints of the B-meson flavor anomalies, JHEP 08 (2021) 050 [arXiv:2103.16558] [INSPIRE].

    Article  ADS  Google Scholar 

  49. B. Belfatto et al., Dark Matter abundance via thermal decays and leptoquark mediators, JHEP 06 (2022) 084 [arXiv:2111.14808] [INSPIRE].

    Article  ADS  Google Scholar 

  50. R. Barbieri, C. Cornella and G. Isidori, Simplified models of vector SU(4) leptoquarks at the TeV, Eur. Phys. J. C 82 (2022) 1161 [arXiv:2207.14248] [INSPIRE].

    Article  ADS  Google Scholar 

  51. ATLAS collaboration, Search for heavy Higgs bosons decaying into two tau leptons with the ATLAS detector using pp collisions at \( \sqrt{s} \) = 13 TeV, Phys. Rev. Lett. 125 (2020) 051801 [arXiv:2002.12223] [INSPIRE].

  52. ATLAS collaboration, Search for pairs of scalar leptoquarks decaying into quarks and electrons or muons in \( \sqrt{s} \) = 13 TeV pp collisions with the ATLAS detector, JHEP 10 (2020) 112 [arXiv:2006.05872] [INSPIRE].

  53. CMS collaboration, Search for singly and pair-produced leptoquarks coupling to third-generation fermions in proton-proton collisions at s=13 TeV, Phys. Lett. B 819 (2021) 136446 [arXiv:2012.04178] [INSPIRE].

  54. CMS collaboration, Searches for additional Higgs bosons and for vector leptoquarks in ττ final states in proton-proton collisions at \( \sqrt{s} \) = 13 TeV, CMS-HIG-21-001 (2022) [arXiv:2208.02717] [INSPIRE].

  55. CMS collaboration, The search for a third-generation leptoquark coupling to a τ lepton and a b quark through single, pair and nonresonant production at \( \sqrt{s} \) = 13 TeV , CMS-PAS-EXO-19-016 (2022).

  56. L. Buonocore, U. Haisch, P. Nason, F. Tramontano and G. Zanderighi, Lepton-Quark Collisions at the Large Hadron Collider, Phys. Rev. Lett. 125 (2020) 231804 [arXiv:2005.06475] [INSPIRE].

  57. L. Buonocore, P. Nason, F. Tramontano and G. Zanderighi, Leptons in the proton, JHEP 08 (2020) 019 [arXiv:2005.06477] [INSPIRE].

    Article  ADS  Google Scholar 

  58. A. Greljo and N. Selimović, Lepton-Quark Fusion at Hadron Colliders, precisely, JHEP 03 (2021) 279 [arXiv:2012.02092] [INSPIRE].

    Article  Google Scholar 

  59. L. Buonocore et al., Resonant leptoquark at NLO with POWHEG, JHEP 11 (2022) 129 [arXiv:2209.02599] [INSPIRE].

    Article  ADS  Google Scholar 

  60. U. Haisch and G. Polesello, Resonant third-generation leptoquark signatures at the Large Hadron Collider, JHEP 05 (2021) 057 [arXiv:2012.11474] [INSPIRE].

    Article  ADS  Google Scholar 

  61. D.A. Faroughy, A. Greljo and J.F. Kamenik, Confronting lepton flavor universality violation in B decays with high-pT tau lepton searches at LHC, Phys. Lett. B 764 (2017) 126 [arXiv:1609.07138] [INSPIRE].

    Article  ADS  Google Scholar 

  62. M.J. Baker, J. Fuentes-Martín, G. Isidori and M. König, High- pT signatures in vector-leptoquark models, Eur. Phys. J. C 79 (2019) 334 [arXiv:1901.10480] [INSPIRE].

    Article  ADS  Google Scholar 

  63. N. Raj, Anticipating nonresonant new physics in dilepton angular spectra at the LHC, Phys. Rev. D 95 (2017) 015011 [arXiv:1610.03795] [INSPIRE].

  64. A. Greljo and D. Marzocca, High-pT dilepton tails and flavor physics, Eur. Phys. J. C 77 (2017) 548 [arXiv:1704.09015] [INSPIRE].

    Article  ADS  Google Scholar 

  65. B.C. Allanach, B. Gripaios and T. You, The case for future hadron colliders from B → K(*)μ+μ− decays, JHEP 03 (2018) 021 [arXiv:1710.06363] [INSPIRE].

    Article  ADS  Google Scholar 

  66. I. Doršner and A. Greljo, Leptoquark toolbox for precision collider studies, JHEP 05 (2018) 126 [arXiv:1801.07641] [INSPIRE].

    Article  ADS  Google Scholar 

  67. Y. Afik, J. Cohen, E. Gozani, E. Kajomovitz and Y. Rozen, Establishing a Search for b → sℓ+ℓ− Anomalies at the LHC, JHEP 08 (2018) 056 [arXiv:1805.11402] [INSPIRE].

    Article  ADS  Google Scholar 

  68. S. Bansal, R.M. Capdevilla, A. Delgado, C. Kolda, A. Martin and N. Raj, Hunting leptoquarks in monolepton searches, Phys. Rev. D 98 (2018) 015037 [arXiv:1806.02370] [INSPIRE].

  69. B.C. Allanach, T. Corbett, M.J. Dolan and T. You, Hadron collider sensitivity to fat flavourful Z′s for \( {R}_{K^{\left(\ast \right)}} \), JHEP 03 (2019) 137 [arXiv:1810.02166] [INSPIRE].

  70. T. Mandal, S. Mitra and S. Raz, \( {R}_{D^{\left(\ast \right)}} \) motivated \( \mathcal{S} \)1 leptoquark scenarios: Impact of interference on the exclusion limits from LHC data, Phys. Rev. D 99 (2019) 055028 [arXiv:1811.03561] [INSPIRE].

  71. D. Choudhury, N. Kumar and A. Kundu, Search for an opposite sign muon-tau pair and a b-jet at the LHC in the context of flavor anomalies, Phys. Rev. D 100 (2019) 075001 [arXiv:1905.07982] [INSPIRE].

  72. A. Angelescu, D.A. Faroughy and O. Sumensari, Lepton Flavor Violation and Dilepton Tails at the LHC, Eur. Phys. J. C 80 (2020) 641 [arXiv:2002.05684] [INSPIRE].

    Article  ADS  Google Scholar 

  73. A. Crivellin, C.A. Manzari and M. Montull, Correlating nonresonant di-electron searches at the LHC to the Cabibbo-angle anomaly and lepton flavor universality violation, Phys. Rev. D 104 (2021) 115016 [arXiv:2103.12003] [INSPIRE].

  74. A. Crivellin, D. Müller and L. Schnell, Combined constraints on first generation leptoquarks, Phys. Rev. D 103 (2021) 115023 [arXiv:2104.06417] [INSPIRE].

  75. A. Crivellin, M. Hoferichter, M. Kirk, C.A. Manzari and L. Schnell, First-generation new physics in simplified models: from low-energy parity violation to the LHC, JHEP 10 (2021) 221 [arXiv:2107.13569] [INSPIRE].

    Article  ADS  Google Scholar 

  76. B. Garland, S. Jäger, C.K. Khosa and S. Kvedaraitė, Probing B anomalies via dimuon tails at a future collider, Phys. Rev. D 105 (2022) 115017 [arXiv:2112.05127] [INSPIRE].

  77. A. Crivellin, B. Fuks and L. Schnell, Explaining the hints for lepton flavour universality violation with three S2 leptoquark generations, JHEP 06 (2022) 169 [arXiv:2203.10111] [INSPIRE].

    Article  ADS  Google Scholar 

  78. A. Azatov, F. Garosi, A. Greljo, D. Marzocca, J. Salko and S. Trifinopoulos, New physics in b → sμμ: FCC-hh or a muon collider?, JHEP 10 (2022) 149 [arXiv:2205.13552] [INSPIRE].

    Article  ADS  Google Scholar 

  79. L. Allwicher, D.A. Faroughy, F. Jaffredo, O. Sumensari and F. Wilsch, Drell-Yan Tails Beyond the Standard Model, arXiv:2207.10714 [INSPIRE].

  80. P. Nason, A New method for combining NLO QCD with shower Monte Carlo algorithms, JHEP 11 (2004) 040 [hep-ph/0409146] [INSPIRE].

  81. S. Frixione, P. Nason and C. Oleari, Matching NLO QCD computations with Parton Shower simulations: the POWHEG method, JHEP 11 (2007) 070 [arXiv:0709.2092] [INSPIRE].

    Article  ADS  Google Scholar 

  82. S. Alioli, P. Nason, C. Oleari and E. Re, A general framework for implementing NLO calculations in shower Monte Carlo programs: the POWHEG BOX, JHEP 06 (2010) 043 [arXiv:1002.2581] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  83. A. Alves, O.J.P.t. Eboli, G. Grilli Di Cortona and R.R. Moreira, Indirect and monojet constraints on scalar leptoquarks, Phys. Rev. D 99 (2019) 095005 [arXiv:1812.08632] [INSPIRE].

  84. U. Haisch, L. Schnell and S. Schulte, On Drell-Yan production of scalar leptoquarks coupling to heavy-quark flavours, JHEP 11 (2022) 106 [arXiv:2207.00356] [INSPIRE].

    Article  ADS  Google Scholar 

  85. J. Fuentes-Martín, G. Isidori, M. König and N. Selimović, Vector Leptoquarks Beyond Tree Level, Phys. Rev. D 101 (2020) 035024 [arXiv:1910.13474] [INSPIRE].

  86. J. Fuentes-Martín, G. Isidori, M. König and N. Selimović, Vector leptoquarks beyond tree level. II. \( \mathcal{O} \)(αs) corrections and radial modes, Phys. Rev. D 102 (2020) 035021 [arXiv:2006.16250] [INSPIRE].

  87. J. Fuentes-Martín, G. Isidori, M. König and N. Selimović, Vector Leptoquarks Beyond Tree Level III: Vector-like Fermions and Flavor-Changing Transitions, Phys. Rev. D 102 (2020) 115015 [arXiv:2009.11296] [INSPIRE].

  88. J. Aebischer, A. Crivellin and C. Greub, QCD improved matching for semileptonic B decays with leptoquarks, Phys. Rev. D 99 (2019) 055002 [arXiv:1811.08907] [INSPIRE].

  89. ATLAS collaboration, Search for New Phenomena in Final States with Two Leptons and One or No b-Tagged Jets at \( \sqrt{s} \) = 13 TeV Using the ATLAS Detector, Phys. Rev. Lett. 127 (2021) 141801 [arXiv:2105.13847] [INSPIRE].

  90. W. Altmannshofer, P.S. Bhupal Dev and A. Soni, \( {R}_{D^{\left(\ast \right)}} \) anomaly: A possible hint for natural supersymmetry with R-parity violation, Phys. Rev. D 96 (2017) 095010 [arXiv:1704.06659] [INSPIRE].

  91. S. Iguro and K. Tobe, R(D(*)) in a general two Higgs doublet model, Nucl. Phys. B 925 (2017) 560 [arXiv:1708.06176] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  92. M. Abdullah, J. Calle, B. Dutta, A. Flórez and D. Restrepo, Probing a simplified, W′ model of R(D(*)) anomalies using b-tags, τ leptons and missing energy, Phys. Rev. D 98 (2018) 055016 [arXiv:1805.01869] [INSPIRE].

  93. D. Marzocca, U. Min and M. Son, Bottom-Flavored Mono-Tau Tails at the LHC, JHEP 12 (2020) 035 [arXiv:2008.07541] [INSPIRE].

    Article  ADS  Google Scholar 

  94. M. Endo, S. Iguro, T. Kitahara, M. Takeuchi and R. Watanabe, Non-resonant new physics search at the LHC for the b → cτν anomalies, JHEP 02 (2022) 106 [arXiv:2111.04748] [INSPIRE].

    Article  ADS  Google Scholar 

  95. H. Georgi and Y. Nakai, Diphoton resonance from a new strong force, Phys. Rev. D 94 (2016) 075005 [arXiv:1606.05865] [INSPIRE].

  96. B. Diaz, M. Schmaltz and Y.-M. Zhong, The leptoquark Hunter’s guide: Pair production, JHEP 10 (2017) 097 [arXiv:1706.05033] [INSPIRE].

    Article  ADS  Google Scholar 

  97. A. Alloul, N.D. Christensen, C. Degrande, C. Duhr and B. Fuks, FeynRules 2.0 — A complete toolbox for tree-level phenomenology, Comput. Phys. Commun. 185 (2014) 2250 [arXiv:1310.1921] [INSPIRE].

    Article  ADS  Google Scholar 

  98. T. Hahn, Generating Feynman diagrams and amplitudes with FeynArts 3, Comput. Phys. Commun. 140 (2001) 418 [hep-ph/0012260] [INSPIRE].

  99. T. Hahn, S. Paßehr and C. Schappacher, FormCalc 9 and Extensions, PoS LL2016 (2016) 068 [arXiv:1604.04611] [INSPIRE].

    Google Scholar 

  100. H.H. Patel, Package-X: A Mathematica package for the analytic calculation of one-loop integrals, Comput. Phys. Commun. 197 (2015) 276 [arXiv:1503.01469] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  101. T. Hahn and M. Perez-Victoria, Automatized one loop calculations in four-dimensions and D-dimensions, Comput. Phys. Commun. 118 (1999) 153 [hep-ph/9807565] [INSPIRE].

  102. S. Frixione, Z. Kunszt and A. Signer, Three jet cross-sections to next-to-leading order, Nucl. Phys. B 467 (1996) 399 [hep-ph/9512328] [INSPIRE].

  103. S. Frixione, A General approach to jet cross-sections in QCD, Nucl. Phys. B 507 (1997) 295 [hep-ph/9706545] [INSPIRE].

  104. NNPDF collaboration, The path to proton structure at 1% accuracy, Eur. Phys. J. C 82 (2022) 428 [arXiv:2109.02653] [INSPIRE].

  105. CMS collaboration, Identification of hadronic tau lepton decays using a deep neural network, JINST 17 (2022) P07023 [arXiv:2201.08458] [INSPIRE].

  106. M. Cacciari, G.P. Salam and G. Soyez, FastJet User Manual, Eur. Phys. J. C 72 (2012) 1896 [arXiv:1111.6097] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  107. CMS collaboration, Identification of heavy-flavour jets with the CMS detector in pp collisions at 13 TeV, JINST 13 (2018) P05011 [arXiv:1712.07158] [INSPIRE].

  108. E. Bols, J. Kieseler, M. Verzetti, M. Stoye and A. Stakia, Jet Flavour Classification Using DeepJet, JINST 15 (2020) P12012 [arXiv:2008.10519] [INSPIRE].

    Article  ADS  Google Scholar 

  109. E. Conte, B. Fuks and G. Serret, MadAnalysis 5, A User-Friendly Framework for Collider Phenomenology, Comput. Phys. Commun. 184 (2013) 222 [arXiv:1206.1599] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  110. DELPHES 3 collaboration, DELPHES 3, A modular framework for fast simulation of a generic collider experiment, JHEP 02 (2014) 057 [arXiv:1307.6346] [INSPIRE].

  111. T. Sjöstrand et al., An introduction to PYTHIA 8.2, Comput. Phys. Commun. 191 (2015) 159 [arXiv:1410.3012] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  112. ATLAS collaboration, Search for neutral Higgs bosons of the minimal supersymmetric standard model in pp collisions at \( \sqrt{s} \) = 8 TeV with the ATLAS detector, JHEP 11 (2014) 056 [arXiv:1409.6064] [INSPIRE].

  113. ATLAS collaboration, Search for new phenomena in pp collisions in final states with tau leptons, b-jets, and missing transverse momentum with the ATLAS detector, Phys. Rev. D 104 (2021) 112005 [arXiv:2108.07665] [INSPIRE].

  114. G. Cowan, K. Cranmer, E. Gross and O. Vitells, Asymptotic formulae for likelihood-based tests of new physics, Eur. Phys. J. C 71 (2011) 1554 [arXiv:1007.1727] [INSPIRE].

    Article  ADS  Google Scholar 

  115. The POWHEG BOX, http://powhegbox.mib.infn.it.

  116. J. Alwall et al., Comparative study of various algorithms for the merging of parton showers and matrix elements in hadronic collisions, Eur. Phys. J. C 53 (2008) 473 [arXiv:0706.2569] [INSPIRE].

    Article  ADS  Google Scholar 

  117. J. Alwall et al., The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations, JHEP 07 (2014) 079 [arXiv:1405.0301] [INSPIRE].

    Article  ADS  Google Scholar 

  118. D. Binosi, J. Collins, C. Kaufhold and L. Theussl, JaxoDraw: A Graphical user interface for drawing Feynman diagrams. Version 2.0 release notes, Comput. Phys. Commun. 180 (2009) 1709 [arXiv:0811.4113] [INSPIRE].

  119. ATLAS collaboration, Measurement of the tau lepton reconstruction and identification performance in the ATLAS experiment using pp collisions at \( \sqrt{s} \) = 13 TeV, ATLAS-CONF-2017-029 (2017) [INSPIRE].

  120. ATLAS collaboration, ATLAS b-jet identification performance and efficiency measurement with \( t\overline{t} \) events in pp collisions at \( \sqrt{s} \) = 13 TeV, Eur. Phys. J. C 79 (2019) 970 [arXiv:1907.05120] [INSPIRE].

  121. CMS collaboration, Performance of reconstruction and identification of τ leptons decaying to hadrons and ντ in pp collisions at \( \sqrt{s} \) = 13 TeV, JINST 13 (2018) P10005 [arXiv:1809.02816] [INSPIRE].

  122. D. Guest, J. Collado, P. Baldi, S.-C. Hsu, G. Urban and D. Whiteson, Jet Flavor Classification in High-Energy Physics with Deep Neural Networks, Phys. Rev. D 94 (2016) 112002 [arXiv:1607.08633] [INSPIRE].

Download references

Author information

Authors and Affiliations

  1. Max Planck Institute for Physics, Föhringer Ring 6, 80805, München, Germany

    Ulrich Haisch, Luc Schnell & Stefan Schulte

  2. Physik-Department, Technische Universität München, James-Franck-Strasse 1, 85748, Garching, Germany

    Luc Schnell & Stefan Schulte

Authors
  1. Ulrich Haisch
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Luc Schnell
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Stefan Schulte
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Luc Schnell.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

ArXiv ePrint: 2209.12780

Rights and permissions

Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Haisch, U., Schnell, L. & Schulte, S. Drell-Yan production in third-generation gauge vector leptoquark models at NLO+PS in QCD. J. High Energ. Phys. 2023, 70 (2023). https://doi.org/10.1007/JHEP02(2023)070

Download citation

  • Received: 20 October 2022

  • Accepted: 10 January 2023

  • Published: 07 February 2023

  • DOI: https://doi.org/10.1007/JHEP02(2023)070

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Specific BSM Phenomenology
  • Higher-Order Perturbative Calculations
  • Bottom Quarks
  • Specific QCD Phenomenology
Download PDF

Working on a manuscript?

Avoid the most common mistakes and prepare your manuscript for journal editors.

Learn more

Advertisement

Over 10 million scientific documents at your fingertips

Switch Edition
  • Academic Edition
  • Corporate Edition
  • Home
  • Impressum
  • Legal information
  • Privacy statement
  • California Privacy Statement
  • How we use cookies
  • Manage cookies/Do not sell my data
  • Accessibility
  • FAQ
  • Contact us
  • Affiliate program

Not affiliated

Springer Nature

© 2023 Springer Nature Switzerland AG. Part of Springer Nature.