Skip to main content

Advertisement

SpringerLink
  • Journal of High Energy Physics
  • Journal Aims and Scope
  • Submit to this journal
Multicriticality in Yang-Lee edge singularity
Download PDF
Your article has downloaded

Similar articles being viewed by others

Slider with three articles shown per slide. Use the Previous and Next buttons to navigate the slides or the slide controller buttons at the end to navigate through each slide.

2D Ising Field Theory in a magnetic field: the Yang-Lee singularity

03 August 2022

Hao-Lan Xu & Alexander Zamolodchikov

Critical points at infinity, non-Gaussian saddles, and bions

13 June 2018

Alireza Behtash, Gerald V. Dunne, … Mithat Ünsal

Modern finite-size criticality: Dirichlet and Neumann boundary conditions

08 January 2019

Messias V. S. Santos, José B. da Silva Jr. & Marcelo M. Leite

Topological quantum criticality in non-Hermitian extended Kitaev chain

28 April 2022

S Rahul & Sujit Sarkar

Exact density of states and Yang–Lee edge singularity of the triangular-lattice ising model in an external magnetic field

03 January 2023

Seung-Yeon Kim

The coupled SYK model at finite temperature

26 May 2020

Xiao-Liang Qi & Pengfei Zhang

Topological invariants, zero mode edge states and finite size effect for a generalized non-reciprocal Su-Schrieffer-Heeger model

01 July 2020

Hui Jiang, Rong Lü & Shu Chen

Multicritical hypercubic models

12 August 2021

R. Ben Alì Zinati, A. Codello & O. Zanusso

Thermodynamic Bethe Ansatz past turning points: the (elliptic) sinh-Gordon model

10 January 2022

Lucía Córdova, Stefano Negro & Fidel I. Schaposnik Massolo

Download PDF
  • Regular Article - Theoretical Physics
  • Open Access
  • Published: 06 February 2023

Multicriticality in Yang-Lee edge singularity

  • Máté Lencsés1,2,3,
  • Alessio Miscioscia  ORCID: orcid.org/0000-0001-6747-09294,5,
  • Giuseppe Mussardo  ORCID: orcid.org/0000-0001-5730-99636 &
  • …
  • Gábor Takács  ORCID: orcid.org/0000-0002-7075-35801,2,7 

Journal of High Energy Physics volume 2023, Article number: 46 (2023) Cite this article

  • 62 Accesses

  • 1 Citations

  • 2 Altmetric

  • Metrics details

A preprint version of the article is available at arXiv.

Abstract

In this paper we study the non-unitary deformations of the two-dimensional Tricritical Ising Model obtained by coupling its two spin ℤ2 odd operators to imaginary magnetic fields. Varying the strengths of these imaginary magnetic fields and adjusting correspondingly the coupling constants of the two spin ℤ2 even fields, we establish the presence of two universality classes of infrared fixed points on the critical surface. The first class corresponds to the familiar Yang-Lee edge singularity, while the second class to its tricritical version. We argue that these two universality classes are controlled by the conformal non-unitary minimal models \( \mathcal{M} \)(2, 5) and \( \mathcal{M} \)(2, 7) respectively, which is supported by considerations based on PT symmetry and the corresponding extension of Zamolodchikov’s c-theorem, and also verified numerically using the truncated conformal space approach. Our results are in agreement with a previous numerical study of the lattice version of the Tricritical Ising Model [1]. We also conjecture the classes of universality corresponding to higher non-unitary multicritical points obtained by perturbing the conformal unitary models with imaginary coupling magnetic fields.

Download to read the full article text

Working on a manuscript?

Avoid the common mistakes

References

  1. G. von Gehlen, NonHermitian tricriticality in the Blume-Capel model with imaginary field, ENSLAPP-L-456-94 (1994) [Int. J. Mod. Phys. B 08 (1994) 3507] [hep-th/9402143] [INSPIRE].

  2. A.A. Belavin, A.M. Polyakov and A.B. Zamolodchikov, Infinite Conformal Symmetry in Two-Dimensional Quantum Field Theory, Nucl. Phys. B 241 (1984) 333 [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. J.L. Cardy, Operator Content of Two-Dimensional Conformally Invariant Theories, Nucl. Phys. B 270 (1986) 186 [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. A. Cappelli, C. Itzykson and J.B. Zuber, Modular Invariant Partition Functions in Two-Dimensions, Nucl. Phys. B 280 (1987) 445 [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. A.B. Zamolodchikov, Conformal Symmetry and Multicritical Points in Two-Dimensional Quantum Field Theory (in Russian), Sov. J. Nucl. Phys. 44 (1986) 529 [INSPIRE].

  6. C.-N. Yang and T.D. Lee, Statistical theory of equations of state and phase transitions. 1. Theory of condensation, Phys. Rev. 87 (1952) 404 [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. T.D. Lee and C.-N. Yang, Statistical theory of equations of state and phase transitions. 2. Lattice gas and Ising model, Phys. Rev. 87 (1952) 410 [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. M.E. Fisher, Yang-Lee Edge Singularity and ϕ3 Field Theory, Phys. Rev. Lett. 40 (1978) 1610 [INSPIRE].

  9. J.L. Cardy, Conformal Invariance and the Yang-lee Edge Singularity in Two-dimensions, Phys. Rev. Lett. 54 (1985) 1354 [INSPIRE].

  10. P. Fonseca and A. Zamolodchikov, Ising field theory in a magnetic field: Analytic properties of the free energy, RUNHETC-2001-37 (2001) [hep-th/0112167] [INSPIRE].

  11. H.-L. Xu and A. Zamolodchikov, 2D Ising Field Theory in a magnetic field: the Yang-Lee singularity, JHEP 08 (2022) 057 [arXiv:2203.11262] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. D. Friedan, Z.-a. Qiu and S.H. Shenker, Conformal Invariance, Unitarity and Two-Dimensional Critical Exponents, Phys. Rev. Lett. 52 (1984) 1575 [INSPIRE].

  13. D. Friedan, Z.-a. Qiu and S.H. Shenker, Superconformal Invariance in Two-Dimensions and the Tricritical Ising Model, Phys. Lett. B 151 (1985) 37 [INSPIRE].

  14. G. Mussardo, R. Bonsignori and A. Trombettoni, Yang-Lee zeros of the Yang-Lee model, J. Phys. A 50 (2017) 484003 [arXiv:1708.06444] [INSPIRE].

  15. G. Mussardo, Statistical Field Theory, Oxford Graduate Texts, Oxford University Press (2020).

  16. A. Deger, F. Brange and C. Flindt, Lee-Yang theory, high cumulants, and large-deviation statistics of the magnetization in the Ising model, Phys. Rev. B 102 (2020) 174418 [arXiv:2006.15125] [INSPIRE].

  17. P.J. Kortman and R.B. Griffiths, Density of Zeros on the Lee-Yang Circle for Two Ising Ferromagnets, Phys. Rev. Lett. 27 (1971) 1439 [INSPIRE].

  18. C. Itzykson, H. Saleur and J.B. Zuber, Conformal Invariance of Nonunitary Two-dimensional Models, EPL 2 (1986) 91 [INSPIRE].

  19. V.P. Yurov and A.B. Zamolodchikov, Truncated conformal space approach to scaling Lee-Yang model, Int. J. Mod. Phys. A 5 (1990) 3221 [INSPIRE].

    Article  ADS  Google Scholar 

  20. J.L. Cardy and G. Mussardo, S Matrix of the Yang-Lee Edge Singularity in Two-Dimensions, Phys. Lett. B 225 (1989) 275 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  21. A.B. Zamolodchikov, Two point correlation function in scaling Lee-Yang model, Nucl. Phys. B 348 (1991) 619 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  22. M. Lassig and G. Mussardo, Hilbert space and structure constants of descendant fields in two-dimensional conformal theories, Comput. Phys. Commun. 66 (1991) 71 [INSPIRE].

  23. D.X. Horvath, K. Hodsagi and G. Takács, Chirally factorised truncated conformal space approach, Comput. Phys. Commun. 277 (2022) 108376 [arXiv:2201.06509] [INSPIRE].

  24. A.C. Cubero, R. Konik, M. Lencsés, G. Mussardo and G. Takács, Duality and form factors in the thermally deformed two-dimensional tricritical Ising model, SciPost Phys. 12 (2022) 162 [arXiv:2109.09767] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  25. G. Feverati, K. Graham, P.A. Pearce, G.Z. Tóth and G. Watts, A Renormalisation group for the truncated conformal space approach, J. Stat. Mech. 0803 (2008) P03011 [hep-th/0612203] [INSPIRE].

    MATH  Google Scholar 

  26. P. Giokas and G. Watts, The renormalisation group for the truncated conformal space approach on the cylinder, KCL-MTH-11-10 (2011) [arXiv:1106.2448] [INSPIRE].

  27. S. Rychkov and L.G. Vitale, Hamiltonian truncation study of the φ4 theory in two dimensions, Phys. Rev. D 91 (2015) 085011 [arXiv:1412.3460] [INSPIRE].

  28. M. Lencsés and G. Takács, Confinement in the q-state Potts model: an RG-TCSA study, JHEP 09 (2015) 146 [arXiv:1506.06477] [INSPIRE].

    Article  ADS  Google Scholar 

  29. M. Luscher, Volume Dependence of the Energy Spectrum in Massive Quantum Field Theories. 1. Stable Particle States, Commun. Math. Phys. 104 (1986) 177 [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. M. Luscher, Volume Dependence of the Energy Spectrum in Massive Quantum Field Theories. 2. Scattering States, Commun. Math. Phys. 105 (1986) 153 [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. M. Lassig, G. Mussardo and J.L. Cardy, The scaling region of the tricritical Ising model in two-dimensions, Nucl. Phys. B 348 (1991) 591 [INSPIRE].

    Article  ADS  Google Scholar 

  32. M. Lassig and M.J. Martins, Finite size effects in theories with factorizable S matrices, Nucl. Phys. B 354 (1991) 666 [INSPIRE].

    Article  ADS  Google Scholar 

  33. G. Delfino, G. Mussardo and P. Simonetti, Nonintegrable quantum field theories as perturbations of certain integrable models, Nucl. Phys. B 473 (1996) 469 [hep-th/9603011] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  34. B. Gabai and X. Yin, On the S-matrix of Ising field theory in two dimensions, JHEP 10 (2022) 168 [arXiv:1905.00710] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  35. P. Fonseca and A. Zamolodchikov, Ising spectroscopy. I. Mesons at T < Tc, RUNHETC-2006-13 (2006) [hep-th/0612304] [INSPIRE].

  36. A. Zamolodchikov and I. Ziyatdinov, Inelastic scattering and elastic amplitude in Ising field theory in a weak magnetic field at T > Tc: Perturbative analysis, Nucl. Phys. B 849 (2011) 654 [arXiv:1102.0767] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  37. A. Zamolodchikov, Ising Spectroscopy II: Particles and poles at T > Tc, RUNHETC-2013-20 (2013) [arXiv:1310.4821] [INSPIRE].

  38. A. Fring, An introduction to PT-symmetric quantum mechanics — time-dependent systems, in 9th Quantum Fest: InterInternational Conference on Quantum Phenomena, Quantum Control and Quantum Optics, (2022) [arXiv:2201.05140] [INSPIRE].

  39. A.B. Zamolodchikov, Irreversibility of the Flux of the Renormalization Group in a 2D Field Theory, JETP Lett. 43 (1986) 730 [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  40. O.A. Castro-Alvaredo, B. Doyon and F. Ravanini, Irreversibility of the renormalization group flow in non-unitary quantum field theory, J. Phys. A 50 (2017) 424002 [arXiv:1706.01871] [INSPIRE].

  41. A.I. Bugrij, Form-factor representation of the correlation function of the two-dimensional Ising model on a cylinder, hep-th/0107117 [INSPIRE].

  42. M. Blume, Theory of the First-Order Magnetic Phase Change in UO2, Phys. Rev. 141 (1966) 517 [INSPIRE].

    Article  ADS  Google Scholar 

  43. H. Capel, On the possibility of first-order phase transitions in ising systems of triplet ions with zero-field splitting, Physica 32 (1966) 966.

    Article  ADS  Google Scholar 

  44. H. Capel, On the possibility of first-order transitions in ising systems of triplet ions with zero-field splitting II, Physica 33 (1967) 295.

    Article  ADS  Google Scholar 

  45. H. Capel, On the possibility of first-order transitions in ising systems of triplet ions with zero-field splitting III, Physica 37 (1967) 423.

    Article  ADS  Google Scholar 

  46. L. Lepori, G. Mussardo and G.Z. Tóth, The particle spectrum of the Tricritical Ising Model with spin reversal symmetric perturbations, J. Stat. Mech. 0809 (2008) P09004 [arXiv:0806.4715] [INSPIRE].

    MathSciNet  Google Scholar 

  47. M. Lencsés, G. Mussardo and G. Takács, Confinement in the tricritical Ising model, Phys. Lett. B 828 (2022) 137008 [arXiv:2111.05360] [INSPIRE].

  48. A. Mossa and G. Mussardo, Analytic properties of the free energy: The Tricritical Ising model, J. Stat. Mech. 0803 (2008) P03010 [arXiv:0710.0991] [INSPIRE].

    MathSciNet  MATH  Google Scholar 

  49. P. Christe and G. Mussardo, Integrable Systems Away from Criticality: The Toda Field Theory and S Matrix of the Tricritical Ising Model, Nucl. Phys. B 330 (1990) 465 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  50. V.A. Fateev and A.B. Zamolodchikov, Conformal field theory and purely elastic S matrices, Int. J. Mod. Phys. A 5 (1990) 1025 [INSPIRE].

  51. V.A. Fateev, The Exact relations between the coupling constants and the masses of particles for the integrable perturbed conformal field theories, Phys. Lett. B 324 (1994) 45 [INSPIRE].

Download references

Author information

Authors and Affiliations

  1. Department of Theoretical Physics, Institute of Physics, Budapest University of Technology and Economics, Műegyetem rkp. 3, Budapest, H-1111, Hungary

    Máté Lencsés & Gábor Takács

  2. BME-MTA Momentum Statistical Field Theory Research Group, Institute of Physics, Budapest University of Technology and Economics, Műegyetem rkp. 3, Budapest, H-1111, Hungary

    Máté Lencsés & Gábor Takács

  3. Wigner Research Centre for Physics, Konkoly-Thege Miklós u. 29–33, Budapest, 1121, Hungary

    Máté Lencsés

  4. Dipartimento di Fisica e Astronomia, Universitá degli Studi di Padova, via Marzolo 8, 35131, Padova, Italy

    Alessio Miscioscia

  5. Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607, Hamburg, Germany

    Alessio Miscioscia

  6. SISSA & INFN, Sezione di Trieste, via Bonomea 265, I-34136, Trieste, Italy

    Giuseppe Mussardo

  7. MTA-BME Quantum Correlations Group (ELKH), Institute of Physics, Budapest University of Technology and Economics, Műegyetem rkp. 3, Budapest, H-1111, Hungary

    Gábor Takács

Authors
  1. Máté Lencsés
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Alessio Miscioscia
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Giuseppe Mussardo
    View author publications

    You can also search for this author in PubMed Google Scholar

  4. Gábor Takács
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Alessio Miscioscia.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

ArXiv ePrint: 2211.01123

Rights and permissions

Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lencsés, M., Miscioscia, A., Mussardo, G. et al. Multicriticality in Yang-Lee edge singularity. J. High Energ. Phys. 2023, 46 (2023). https://doi.org/10.1007/JHEP02(2023)046

Download citation

  • Received: 11 November 2022

  • Revised: 12 January 2023

  • Accepted: 20 January 2023

  • Published: 06 February 2023

  • DOI: https://doi.org/10.1007/JHEP02(2023)046

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Field Theories in Lower Dimensions
  • Renormalization Group
  • Scale and Conformal Symmetries
Download PDF

Working on a manuscript?

Avoid the common mistakes

Advertisement

Over 10 million scientific documents at your fingertips

Switch Edition
  • Academic Edition
  • Corporate Edition
  • Home
  • Impressum
  • Legal information
  • Privacy statement
  • California Privacy Statement
  • How we use cookies
  • Manage cookies/Do not sell my data
  • Accessibility
  • FAQ
  • Contact us
  • Affiliate program

Not affiliated

Springer Nature

© 2023 Springer Nature Switzerland AG. Part of Springer Nature.