Abstract
In this paper we study the non-unitary deformations of the two-dimensional Tricritical Ising Model obtained by coupling its two spin ℤ2 odd operators to imaginary magnetic fields. Varying the strengths of these imaginary magnetic fields and adjusting correspondingly the coupling constants of the two spin ℤ2 even fields, we establish the presence of two universality classes of infrared fixed points on the critical surface. The first class corresponds to the familiar Yang-Lee edge singularity, while the second class to its tricritical version. We argue that these two universality classes are controlled by the conformal non-unitary minimal models \( \mathcal{M} \)(2, 5) and \( \mathcal{M} \)(2, 7) respectively, which is supported by considerations based on PT symmetry and the corresponding extension of Zamolodchikov’s c-theorem, and also verified numerically using the truncated conformal space approach. Our results are in agreement with a previous numerical study of the lattice version of the Tricritical Ising Model [1]. We also conjecture the classes of universality corresponding to higher non-unitary multicritical points obtained by perturbing the conformal unitary models with imaginary coupling magnetic fields.
References
G. von Gehlen, NonHermitian tricriticality in the Blume-Capel model with imaginary field, ENSLAPP-L-456-94 (1994) [Int. J. Mod. Phys. B 08 (1994) 3507] [hep-th/9402143] [INSPIRE].
A.A. Belavin, A.M. Polyakov and A.B. Zamolodchikov, Infinite Conformal Symmetry in Two-Dimensional Quantum Field Theory, Nucl. Phys. B 241 (1984) 333 [INSPIRE].
J.L. Cardy, Operator Content of Two-Dimensional Conformally Invariant Theories, Nucl. Phys. B 270 (1986) 186 [INSPIRE].
A. Cappelli, C. Itzykson and J.B. Zuber, Modular Invariant Partition Functions in Two-Dimensions, Nucl. Phys. B 280 (1987) 445 [INSPIRE].
A.B. Zamolodchikov, Conformal Symmetry and Multicritical Points in Two-Dimensional Quantum Field Theory (in Russian), Sov. J. Nucl. Phys. 44 (1986) 529 [INSPIRE].
C.-N. Yang and T.D. Lee, Statistical theory of equations of state and phase transitions. 1. Theory of condensation, Phys. Rev. 87 (1952) 404 [INSPIRE].
T.D. Lee and C.-N. Yang, Statistical theory of equations of state and phase transitions. 2. Lattice gas and Ising model, Phys. Rev. 87 (1952) 410 [INSPIRE].
M.E. Fisher, Yang-Lee Edge Singularity and ϕ3 Field Theory, Phys. Rev. Lett. 40 (1978) 1610 [INSPIRE].
J.L. Cardy, Conformal Invariance and the Yang-lee Edge Singularity in Two-dimensions, Phys. Rev. Lett. 54 (1985) 1354 [INSPIRE].
P. Fonseca and A. Zamolodchikov, Ising field theory in a magnetic field: Analytic properties of the free energy, RUNHETC-2001-37 (2001) [hep-th/0112167] [INSPIRE].
H.-L. Xu and A. Zamolodchikov, 2D Ising Field Theory in a magnetic field: the Yang-Lee singularity, JHEP 08 (2022) 057 [arXiv:2203.11262] [INSPIRE].
D. Friedan, Z.-a. Qiu and S.H. Shenker, Conformal Invariance, Unitarity and Two-Dimensional Critical Exponents, Phys. Rev. Lett. 52 (1984) 1575 [INSPIRE].
D. Friedan, Z.-a. Qiu and S.H. Shenker, Superconformal Invariance in Two-Dimensions and the Tricritical Ising Model, Phys. Lett. B 151 (1985) 37 [INSPIRE].
G. Mussardo, R. Bonsignori and A. Trombettoni, Yang-Lee zeros of the Yang-Lee model, J. Phys. A 50 (2017) 484003 [arXiv:1708.06444] [INSPIRE].
G. Mussardo, Statistical Field Theory, Oxford Graduate Texts, Oxford University Press (2020).
A. Deger, F. Brange and C. Flindt, Lee-Yang theory, high cumulants, and large-deviation statistics of the magnetization in the Ising model, Phys. Rev. B 102 (2020) 174418 [arXiv:2006.15125] [INSPIRE].
P.J. Kortman and R.B. Griffiths, Density of Zeros on the Lee-Yang Circle for Two Ising Ferromagnets, Phys. Rev. Lett. 27 (1971) 1439 [INSPIRE].
C. Itzykson, H. Saleur and J.B. Zuber, Conformal Invariance of Nonunitary Two-dimensional Models, EPL 2 (1986) 91 [INSPIRE].
V.P. Yurov and A.B. Zamolodchikov, Truncated conformal space approach to scaling Lee-Yang model, Int. J. Mod. Phys. A 5 (1990) 3221 [INSPIRE].
J.L. Cardy and G. Mussardo, S Matrix of the Yang-Lee Edge Singularity in Two-Dimensions, Phys. Lett. B 225 (1989) 275 [INSPIRE].
A.B. Zamolodchikov, Two point correlation function in scaling Lee-Yang model, Nucl. Phys. B 348 (1991) 619 [INSPIRE].
M. Lassig and G. Mussardo, Hilbert space and structure constants of descendant fields in two-dimensional conformal theories, Comput. Phys. Commun. 66 (1991) 71 [INSPIRE].
D.X. Horvath, K. Hodsagi and G. Takács, Chirally factorised truncated conformal space approach, Comput. Phys. Commun. 277 (2022) 108376 [arXiv:2201.06509] [INSPIRE].
A.C. Cubero, R. Konik, M. Lencsés, G. Mussardo and G. Takács, Duality and form factors in the thermally deformed two-dimensional tricritical Ising model, SciPost Phys. 12 (2022) 162 [arXiv:2109.09767] [INSPIRE].
G. Feverati, K. Graham, P.A. Pearce, G.Z. Tóth and G. Watts, A Renormalisation group for the truncated conformal space approach, J. Stat. Mech. 0803 (2008) P03011 [hep-th/0612203] [INSPIRE].
P. Giokas and G. Watts, The renormalisation group for the truncated conformal space approach on the cylinder, KCL-MTH-11-10 (2011) [arXiv:1106.2448] [INSPIRE].
S. Rychkov and L.G. Vitale, Hamiltonian truncation study of the φ4 theory in two dimensions, Phys. Rev. D 91 (2015) 085011 [arXiv:1412.3460] [INSPIRE].
M. Lencsés and G. Takács, Confinement in the q-state Potts model: an RG-TCSA study, JHEP 09 (2015) 146 [arXiv:1506.06477] [INSPIRE].
M. Luscher, Volume Dependence of the Energy Spectrum in Massive Quantum Field Theories. 1. Stable Particle States, Commun. Math. Phys. 104 (1986) 177 [INSPIRE].
M. Luscher, Volume Dependence of the Energy Spectrum in Massive Quantum Field Theories. 2. Scattering States, Commun. Math. Phys. 105 (1986) 153 [INSPIRE].
M. Lassig, G. Mussardo and J.L. Cardy, The scaling region of the tricritical Ising model in two-dimensions, Nucl. Phys. B 348 (1991) 591 [INSPIRE].
M. Lassig and M.J. Martins, Finite size effects in theories with factorizable S matrices, Nucl. Phys. B 354 (1991) 666 [INSPIRE].
G. Delfino, G. Mussardo and P. Simonetti, Nonintegrable quantum field theories as perturbations of certain integrable models, Nucl. Phys. B 473 (1996) 469 [hep-th/9603011] [INSPIRE].
B. Gabai and X. Yin, On the S-matrix of Ising field theory in two dimensions, JHEP 10 (2022) 168 [arXiv:1905.00710] [INSPIRE].
P. Fonseca and A. Zamolodchikov, Ising spectroscopy. I. Mesons at T < Tc, RUNHETC-2006-13 (2006) [hep-th/0612304] [INSPIRE].
A. Zamolodchikov and I. Ziyatdinov, Inelastic scattering and elastic amplitude in Ising field theory in a weak magnetic field at T > Tc: Perturbative analysis, Nucl. Phys. B 849 (2011) 654 [arXiv:1102.0767] [INSPIRE].
A. Zamolodchikov, Ising Spectroscopy II: Particles and poles at T > Tc, RUNHETC-2013-20 (2013) [arXiv:1310.4821] [INSPIRE].
A. Fring, An introduction to PT-symmetric quantum mechanics — time-dependent systems, in 9th Quantum Fest: InterInternational Conference on Quantum Phenomena, Quantum Control and Quantum Optics, (2022) [arXiv:2201.05140] [INSPIRE].
A.B. Zamolodchikov, Irreversibility of the Flux of the Renormalization Group in a 2D Field Theory, JETP Lett. 43 (1986) 730 [INSPIRE].
O.A. Castro-Alvaredo, B. Doyon and F. Ravanini, Irreversibility of the renormalization group flow in non-unitary quantum field theory, J. Phys. A 50 (2017) 424002 [arXiv:1706.01871] [INSPIRE].
A.I. Bugrij, Form-factor representation of the correlation function of the two-dimensional Ising model on a cylinder, hep-th/0107117 [INSPIRE].
M. Blume, Theory of the First-Order Magnetic Phase Change in UO2, Phys. Rev. 141 (1966) 517 [INSPIRE].
H. Capel, On the possibility of first-order phase transitions in ising systems of triplet ions with zero-field splitting, Physica 32 (1966) 966.
H. Capel, On the possibility of first-order transitions in ising systems of triplet ions with zero-field splitting II, Physica 33 (1967) 295.
H. Capel, On the possibility of first-order transitions in ising systems of triplet ions with zero-field splitting III, Physica 37 (1967) 423.
L. Lepori, G. Mussardo and G.Z. Tóth, The particle spectrum of the Tricritical Ising Model with spin reversal symmetric perturbations, J. Stat. Mech. 0809 (2008) P09004 [arXiv:0806.4715] [INSPIRE].
M. Lencsés, G. Mussardo and G. Takács, Confinement in the tricritical Ising model, Phys. Lett. B 828 (2022) 137008 [arXiv:2111.05360] [INSPIRE].
A. Mossa and G. Mussardo, Analytic properties of the free energy: The Tricritical Ising model, J. Stat. Mech. 0803 (2008) P03010 [arXiv:0710.0991] [INSPIRE].
P. Christe and G. Mussardo, Integrable Systems Away from Criticality: The Toda Field Theory and S Matrix of the Tricritical Ising Model, Nucl. Phys. B 330 (1990) 465 [INSPIRE].
V.A. Fateev and A.B. Zamolodchikov, Conformal field theory and purely elastic S matrices, Int. J. Mod. Phys. A 5 (1990) 1025 [INSPIRE].
V.A. Fateev, The Exact relations between the coupling constants and the masses of particles for the integrable perturbed conformal field theories, Phys. Lett. B 324 (1994) 45 [INSPIRE].
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
ArXiv ePrint: 2211.01123
Rights and permissions
Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.
About this article
Cite this article
Lencsés, M., Miscioscia, A., Mussardo, G. et al. Multicriticality in Yang-Lee edge singularity. J. High Energ. Phys. 2023, 46 (2023). https://doi.org/10.1007/JHEP02(2023)046
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1007/JHEP02(2023)046
Keywords
- Field Theories in Lower Dimensions
- Renormalization Group
- Scale and Conformal Symmetries