Skip to main content

Light bending from eikonal in worldline quantum field theory

A preprint version of the article is available at arXiv.

Abstract

Using the worldline quantum field theory (WQFT) formalism for classical scattering, we study the deflection of light by a heavy massive spinless/spinning object. WQFT requires the use of the worldline dressed propagator of a photon in a gravitational background, which we construct from first principles. The action required to set up the worldline path integral is constructed using auxiliary variables, which describe dynamically the spin degrees of freedom of the photon and take care of path ordering. We test the fully regulated path integral by recovering the photon-photon-graviton vertex. With the dressed propagator at hand, we follow the WQFT procedure by setting up the partition function and deriving the Feynman rules which can be used to evaluate it perturbatively. These rules depend on the auxiliary variables. The latter ultimately do not contribute in the geometric-optics regime, which realizes the equivalence between the scattering of a photon and a massive scalar with that of a massless and a massive scalar. Then, the calculation of the eikonal phase and the deflection angle simplifies considerably. Using the eikonal phase defined in terms of the partition function, we calculate explicitly the deflection angle at NLO in the spinless case, and at LO in the spinning case up to quadratic order in spin.

References

  1. G. Mogull, J. Plefka and J. Steinhoff, Classical black hole scattering from a worldline quantum field theory, JHEP 02 (2021) 048 [arXiv:2010.02865] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  2. K. Daikouji, M. Shino and Y. Sumino, Bern-Kosower rule for scalar QED, Phys. Rev. D 53 (1996) 4598 [hep-ph/9508377] [INSPIRE].

  3. N. Ahmadiniaz, A. Bashir and C. Schubert, Multiphoton amplitudes and generalized Landau-Khalatnikov-Fradkin transformation in scalar QED, Phys. Rev. D 93 (2016) 045023 [arXiv:1511.05087] [INSPIRE].

  4. N. Ahmadiniaz, F. Bastianelli and O. Corradini, Dressed scalar propagator in a non-Abelian background from the worldline formalism, Phys. Rev. D 93 (2016) 025035 [Addendum ibid. 93 (2016) 049904] [arXiv:1508.05144] [INSPIRE].

  5. J.P. Edwards and C. Schubert, One-particle reducible contribution to the one-loop scalar propagator in a constant field, Nucl. Phys. B 923 (2017) 339 [arXiv:1704.00482] [INSPIRE].

    ADS  Article  Google Scholar 

  6. N. Ahmadiniaz, F. Bastianelli, O. Corradini, J.P. Edwards and C. Schubert, One-particle reducible contribution to the one-loop spinor propagator in a constant field, Nucl. Phys. B 924 (2017) 377 [arXiv:1704.05040] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  7. N. Ahmadiniaz, V.M. Banda Guzmán, F. Bastianelli, O. Corradini, J.P. Edwards and C. Schubert, Worldline master formulas for the dressed electron propagator. Part I. Off-shell amplitudes, JHEP 08 (2020) 049 [arXiv:2004.01391] [INSPIRE].

  8. O. Corradini and G.D. Esposti, Dressed Dirac propagator from a locally supersymmetric N = 1 spinning particle, Nucl. Phys. B 970 (2021) 115498 [arXiv:2008.03114] [INSPIRE].

  9. N. Ahmadiniaz, V.M.B. Guzman, F. Bastianelli, O. Corradini, J.P. Edwards and C. Schubert, Worldline master formulas for the dressed electron propagator. Part 2. On-shell amplitudes, JHEP 01 (2022) 050 [arXiv:2107.00199] [INSPIRE].

  10. E. Fradkin, Application of functional methods in quantum field theory and quantum statistics (II), Nucl. Phys. 76 (1966) 588 [INSPIRE].

  11. M. Fabbrichesi, R. Pettorino, G. Veneziano and G.A. Vilkovisky, Planckian energy scattering and surface terms in the gravitational action, Nucl. Phys. B 419 (1994) 147 [hep-th/9309037] [INSPIRE].

    ADS  Article  Google Scholar 

  12. W.D. Goldberger and I.Z. Rothstein, An Effective field theory of gravity for extended objects, Phys. Rev. D 73 (2006) 104029 [hep-th/0409156] [INSPIRE].

  13. W.D. Goldberger and I.Z. Rothstein, Towers of Gravitational Theories, Gen. Rel. Grav. 38 (2006) 1537 [hep-th/0605238] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  14. W.D. Goldberger and A. Ross, Gravitational radiative corrections from effective field theory, Phys. Rev. D 81 (2010) 124015 [arXiv:0912.4254] [INSPIRE].

  15. G.U. Jakobsen, G. Mogull, J. Plefka and J. Steinhoff, Classical Gravitational Bremsstrahlung from a Worldline Quantum Field Theory, Phys. Rev. Lett. 126 (2021) 201103 [arXiv:2101.12688] [INSPIRE].

  16. G.U. Jakobsen, G. Mogull, J. Plefka and J. Steinhoff, Gravitational Bremsstrahlung and Hidden Supersymmetry of Spinning Bodies, Phys. Rev. Lett. 128 (2022) 011101 [arXiv:2106.10256] [INSPIRE].

  17. G.U. Jakobsen, G. Mogull, J. Plefka and J. Steinhoff, SUSY in the sky with gravitons, JHEP 01 (2022) 027 [arXiv:2109.04465] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  18. C. Shi and J. Plefka, Classical double copy of worldline quantum field theory, Phys. Rev. D 105 (2022) 026007 [arXiv:2109.10345] [INSPIRE].

  19. N.E.J. Bjerrum-Bohr, B.R. Holstein, J.F. Donoghue, L. Planté and P. Vanhove, Illuminating Light Bending, PoS CORFU2016 (2017) 077 [arXiv:1704.01624] [INSPIRE].

  20. J.F. Donoghue, General relativity as an effective field theory: The leading quantum corrections, Phys. Rev. D 50 (1994) 3874 [gr-qc/9405057] [INSPIRE].

  21. N.E.J. Bjerrum-Bohr, J.F. Donoghue and B.R. Holstein, Quantum gravitational corrections to the nonrelativistic scattering potential of two masses, Phys. Rev. D 67 (2003) 084033 [Erratum ibid. 71 (2005) 069903] [hep-th/0211072] [INSPIRE].

  22. N.E.J. Bjerrum-Bohr, J.F. Donoghue and P. Vanhove, On-shell Techniques and Universal Results in Quantum Gravity, JHEP 02 (2014) 111 [arXiv:1309.0804] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  23. N.E.J. Bjerrum-Bohr, J.F. Donoghue, B.R. Holstein, L. Planté and P. Vanhove, Bending of Light in Quantum Gravity, Phys. Rev. Lett. 114 (2015) 061301 [arXiv:1410.7590] [INSPIRE].

  24. N.E.J. Bjerrum-Bohr, J.F. Donoghue, B.R. Holstein, L. Plante and P. Vanhove, Light-like Scattering in Quantum Gravity, JHEP 11 (2016) 117 [arXiv:1609.07477] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  25. D. Bai and Y. Huang, More on the Bending of Light in Quantum Gravity, Phys. Rev. D 95 (2017) 064045 [arXiv:1612.07629] [INSPIRE].

  26. N.E.J. Bjerrum-Bohr, J.F. Donoghue, B.K. El-Menoufi, B.R. Holstein, L. Planté and P. Vanhove, The Equivalence Principle in a Quantum World, Int. J. Mod. Phys. D 24 (2015) 1544013 [arXiv:1505.04974] [INSPIRE].

    ADS  Article  Google Scholar 

  27. N.E.J. Bjerrum-Bohr, P.H. Damgaard, G. Festuccia, L. Planté and P. Vanhove, General Relativity from Scattering Amplitudes, Phys. Rev. Lett. 121 (2018) 171601 [arXiv:1806.04920] [INSPIRE].

  28. D. Amati, M. Ciafaloni and G. Veneziano, Higher Order Gravitational Deflection and Soft Bremsstrahlung in Planckian Energy Superstring Collisions, Nucl. Phys. B 347 (1990) 550 [INSPIRE].

  29. S. Melville, S.G. Naculich, H.J. Schnitzer and C.D. White, Wilson line approach to gravity in the high energy limit, Phys. Rev. D 89 (2014) 025009 [arXiv:1306.6019] [INSPIRE].

  30. A. Luna, S. Melville, S.G. Naculich and C.D. White, Next-to-soft corrections to high energy scattering in QCD and gravity, JHEP 01 (2017) 052 [arXiv:1611.02172] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  31. R. Akhoury, R. Saotome and G. Sterman, High Energy Scattering in Perturbative Quantum Gravity at Next to Leading Power, Phys. Rev. D 103 (2021) 064036 [arXiv:1308.5204] [INSPIRE].

  32. A. Koemans Collado, P. Di Vecchia and R. Russo, Revisiting the second post-Minkowskian eikonal and the dynamics of binary black holes, Phys. Rev. D 100 (2019) 066028 [arXiv:1904.02667] [INSPIRE].

  33. A. Cristofoli, P.H. Damgaard, P. Di Vecchia and C. Heissenberg, Second-order Post-Minkowskian scattering in arbitrary dimensions, JHEP 07 (2020) 122 [arXiv:2003.10274] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  34. P. Di Vecchia, A. Luna, S.G. Naculich, R. Russo, G. Veneziano and C.D. White, A tale of two exponentiations in \( \mathcal{N} \) = 8 supergravity, Phys. Lett. B 798 (2019) 134927 [arXiv:1908.05603] [INSPIRE].

  35. P. Di Vecchia, S.G. Naculich, R. Russo, G. Veneziano and C.D. White, A tale of two exponentiations in \( \mathcal{N} \) = 8 supergravity at subleading level, JHEP 03 (2020) 173 [arXiv:1911.11716] [INSPIRE].

  36. Z. Bern, H. Ita, J. Parra-Martinez and M.S. Ruf, Universality in the classical limit of massless gravitational scattering, Phys. Rev. Lett. 125 (2020) 031601 [arXiv:2002.02459] [INSPIRE].

  37. J. Parra-Martinez, M.S. Ruf and M. Zeng, Extremal black hole scattering at \( \mathcal{O} \)(G3): graviton dominance, eikonal exponentiation, and differential equations, JHEP 11 (2020) 023 [arXiv:2005.04236] [INSPIRE].

  38. P. Di Vecchia, C. Heissenberg, R. Russo and G. Veneziano, The eikonal approach to gravitational scattering and radiation at \( \mathcal{O} \)(G3), JHEP 07 (2021) 169 [arXiv:2104.03256] [INSPIRE].

  39. C. Heissenberg, Infrared divergences and the eikonal exponentiation, Phys. Rev. D 104 (2021) 046016 [arXiv:2105.04594] [INSPIRE].

  40. P.H. Damgaard, L. Plante and P. Vanhove, On an exponential representation of the gravitational S-matrix, JHEP 11 (2021) 213 [arXiv:2107.12891] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  41. L. de la Cruz, A. Luna and T. Scheopner, Yang-Mills observables: from KMOC to eikonal through EFT, JHEP 01 (2022) 045 [arXiv:2108.02178] [INSPIRE].

    MathSciNet  Article  Google Scholar 

  42. Z. Bern, A. Luna, R. Roiban, C.-H. Shen and M. Zeng, Spinning black hole binary dynamics, scattering amplitudes, and effective field theory, Phys. Rev. D 104 (2021) 065014 [arXiv:2005.03071] [INSPIRE].

  43. M. Accettulli Huber, A. Brandhuber, S. De Angelis and G. Travaglini, Eikonal phase matrix, deflection angle and time delay in effective field theories of gravity, Phys. Rev. D 102 (2020) 046014 [arXiv:2006.02375] [INSPIRE].

  44. D. Kosmopoulos and A. Luna, Quadratic-in-spin Hamiltonian at \( \mathcal{O} \)(G2) from scattering amplitudes, JHEP 07 (2021) 037 [arXiv:2102.10137] [INSPIRE].

  45. A. Brandhuber, G. Chen, G. Travaglini and C. Wen, Classical gravitational scattering from a gauge-invariant double copy, JHEP 10 (2021) 118 [arXiv:2108.04216] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  46. R. Aoude and A. Ochirov, Classical observables from coherent-spin amplitudes, JHEP 10 (2021) 008 [arXiv:2108.01649] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  47. A. Cristofoli, R. Gonzo, D.A. Kosower and D. O’Connell, Waveforms from Amplitudes, arXiv:2107.10193 [INSPIRE].

  48. D.A. Kosower, B. Maybee and D. O’Connell, Amplitudes, Observables, and Classical Scattering, JHEP 02 (2019) 137 [arXiv:1811.10950] [INSPIRE].

  49. B. Maybee, D. O’Connell and J. Vines, Observables and amplitudes for spinning particles and black holes, JHEP 12 (2019) 156 [arXiv:1906.09260] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  50. L. de la Cruz, B. Maybee, D. O’Connell and A. Ross, Classical Yang-Mills observables from amplitudes, JHEP 12 (2020) 076 [arXiv:2009.03842] [INSPIRE].

    MathSciNet  Article  Google Scholar 

  51. F. Bastianelli and P. van Nieuwenhuizen, Path integrals and anomalies in curved space, Cambridge Monographs on Mathematical Physics Cambridge University Press, Cambridge U.K. (2006).

  52. F. Bastianelli, R. Bonezzi, O. Corradini and E. Latini, Extended SUSY quantum mechanics: transition amplitudes and path integrals, JHEP 06 (2011) 023 [arXiv:1103.3993] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  53. F. Bastianelli and A. Zirotti, Worldline formalism in a gravitational background, Nucl. Phys. B 642 (2002) 372 [hep-th/0205182] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  54. C. Schubert, Perturbative quantum field theory in the string inspired formalism, Phys. Rept. 355 (2001) 73 [hep-th/0101036] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  55. D. Amati, M. Ciafaloni and G. Veneziano, Superstring Collisions at Planckian Energies, Phys. Lett. B 197 (1987) 81 [INSPIRE].

  56. F. Bastianelli and P. van Nieuwenhuizen, Trace anomalies from quantum mechanics, Nucl. Phys. B 389 (1993) 53 [hep-th/9208059] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  57. F. Bastianelli, P. Benincasa and S. Giombi, Worldline approach to vector and antisymmetric tensor fields, JHEP 04 (2005) 010 [hep-th/0503155] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  58. F. Bastianelli, P. Benincasa and S. Giombi, Worldline approach to vector and antisymmetric tensor fields. II, JHEP 10 (2005) 114 [hep-th/0510010] [INSPIRE].

  59. F. Bastianelli, R. Bonezzi, O. Corradini and E. Latini, Particles with non abelian charges, JHEP 10 (2013) 098 [arXiv:1309.1608] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  60. F. Bastianelli, F. Comberiati and L. de la Cruz, Worldline description of a bi-adjoint scalar and the zeroth copy, JHEP 12 (2021) 023 [arXiv:2107.10130] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  61. F. Bastianelli and R. Bonezzi, One-loop quantum gravity from a worldline viewpoint, JHEP 07 (2013) 016 [arXiv:1304.7135] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  62. M.A. Oancea, C.F. Paganini, J. Joudioux and L. Andersson, An overview of the gravitational spin Hall effect, arXiv:1904.09963 [INSPIRE].

  63. M.A. Oancea, J. Joudioux, I.Y. Dodin, D.E. Ruiz, C.F. Paganini and L. Andersson, Gravitational spin Hall effect of light, Phys. Rev. D 102 (2020) 024075 [arXiv:2003.04553] [INSPIRE].

  64. L. Andersson, J. Joudioux, M.A. Oancea and A. Raj, Propagation of polarized gravitational waves, Phys. Rev. D 103 (2021) 044053 [arXiv:2012.08363] [INSPIRE].

  65. N.E.J. Bjerrum-Bohr, B.R. Holstein, L. Planté and P. Vanhove, Graviton-Photon Scattering, Phys. Rev. D 91 (2015) 064008 [arXiv:1410.4148] [INSPIRE].

  66. J. Plefka, J. Steinhoff and W. Wormsbecher, Effective action of dilaton gravity as the classical double copy of Yang-Mills theory, Phys. Rev. D 99 (2019) 024021 [arXiv:1807.09859] [INSPIRE].

  67. G. Kälin and R.A. Porto, Post-Minkowskian Effective Field Theory for Conservative Binary Dynamics, JHEP 11 (2020) 106 [arXiv:2006.01184] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  68. T. Ono, A. Ishihara and H. Asada, Gravitomagnetic bending angle of light with finite-distance corrections in stationary axisymmetric spacetimes, Phys. Rev. D 96 (2017) 104037 [arXiv:1704.05615] [INSPIRE].

  69. R. Kumar, B.P. Singh and S.G. Ghosh, Shadow and deflection angle of rotating black hole in asymptotically safe gravity, Annals Phys. 420 (2020) 168252 [arXiv:1904.07652] [INSPIRE].

  70. F. Bastianelli and R. Bonezzi, Quantum theory of massless (p,0)-forms, JHEP 09 (2011) 018 [arXiv:1107.3661] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  71. F. Bastianelli, R. Bonezzi and C. Iazeolla, Quantum theories of (p,q)-forms, JHEP 08 (2012) 045 [arXiv:1204.5954] [INSPIRE].

  72. E. Laenen, G. Stavenga and C.D. White, Path integral approach to eikonal and next-to-eikonal exponentiation, JHEP 03 (2009) 054 [arXiv:0811.2067] [INSPIRE].

    ADS  Article  Google Scholar 

  73. C.D. White, Factorization Properties of Soft Graviton Amplitudes, JHEP 05 (2011) 060 [arXiv:1103.2981] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  74. D. Bonocore, A. Kulesza and J. Pirsch, Classical and quantum gravitational scattering with Generalized Wilson Lines, arXiv:2112.02009 [INSPIRE].

  75. D. Bonocore, Asymptotic dynamics on the worldline for spinning particles, JHEP 02 (2021) 007 [arXiv:2009.07863] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  76. M. Difallah, A. Szameit and M. Ornigotti, Path-integral description of quantum nonlinear optics in arbitrary media, Phys. Rev. A 100 (2019) 053845 [arXiv:1904.02548] [INSPIRE].

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco Comberiati.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

ArXiv ePrint: 2112.05013

Rights and permissions

Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bastianelli, F., Comberiati, F. & de la Cruz, L. Light bending from eikonal in worldline quantum field theory. J. High Energ. Phys. 2022, 209 (2022). https://doi.org/10.1007/JHEP02(2022)209

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP02(2022)209

Keywords

  • Black Holes
  • Classical Theories of Gravity
  • Scattering Amplitudes