G. Mogull, J. Plefka and J. Steinhoff, Classical black hole scattering from a worldline quantum field theory, JHEP 02 (2021) 048 [arXiv:2010.02865] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
K. Daikouji, M. Shino and Y. Sumino, Bern-Kosower rule for scalar QED, Phys. Rev. D 53 (1996) 4598 [hep-ph/9508377] [INSPIRE].
N. Ahmadiniaz, A. Bashir and C. Schubert, Multiphoton amplitudes and generalized Landau-Khalatnikov-Fradkin transformation in scalar QED, Phys. Rev. D 93 (2016) 045023 [arXiv:1511.05087] [INSPIRE].
N. Ahmadiniaz, F. Bastianelli and O. Corradini, Dressed scalar propagator in a non-Abelian background from the worldline formalism, Phys. Rev. D 93 (2016) 025035 [Addendum ibid. 93 (2016) 049904] [arXiv:1508.05144] [INSPIRE].
J.P. Edwards and C. Schubert, One-particle reducible contribution to the one-loop scalar propagator in a constant field, Nucl. Phys. B 923 (2017) 339 [arXiv:1704.00482] [INSPIRE].
ADS
Article
Google Scholar
N. Ahmadiniaz, F. Bastianelli, O. Corradini, J.P. Edwards and C. Schubert, One-particle reducible contribution to the one-loop spinor propagator in a constant field, Nucl. Phys. B 924 (2017) 377 [arXiv:1704.05040] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
N. Ahmadiniaz, V.M. Banda Guzmán, F. Bastianelli, O. Corradini, J.P. Edwards and C. Schubert, Worldline master formulas for the dressed electron propagator. Part I. Off-shell amplitudes, JHEP 08 (2020) 049 [arXiv:2004.01391] [INSPIRE].
O. Corradini and G.D. Esposti, Dressed Dirac propagator from a locally supersymmetric N = 1 spinning particle, Nucl. Phys. B 970 (2021) 115498 [arXiv:2008.03114] [INSPIRE].
N. Ahmadiniaz, V.M.B. Guzman, F. Bastianelli, O. Corradini, J.P. Edwards and C. Schubert, Worldline master formulas for the dressed electron propagator. Part 2. On-shell amplitudes, JHEP 01 (2022) 050 [arXiv:2107.00199] [INSPIRE].
E. Fradkin, Application of functional methods in quantum field theory and quantum statistics (II), Nucl. Phys. 76 (1966) 588 [INSPIRE].
M. Fabbrichesi, R. Pettorino, G. Veneziano and G.A. Vilkovisky, Planckian energy scattering and surface terms in the gravitational action, Nucl. Phys. B 419 (1994) 147 [hep-th/9309037] [INSPIRE].
ADS
Article
Google Scholar
W.D. Goldberger and I.Z. Rothstein, An Effective field theory of gravity for extended objects, Phys. Rev. D 73 (2006) 104029 [hep-th/0409156] [INSPIRE].
W.D. Goldberger and I.Z. Rothstein, Towers of Gravitational Theories, Gen. Rel. Grav. 38 (2006) 1537 [hep-th/0605238] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
W.D. Goldberger and A. Ross, Gravitational radiative corrections from effective field theory, Phys. Rev. D 81 (2010) 124015 [arXiv:0912.4254] [INSPIRE].
G.U. Jakobsen, G. Mogull, J. Plefka and J. Steinhoff, Classical Gravitational Bremsstrahlung from a Worldline Quantum Field Theory, Phys. Rev. Lett. 126 (2021) 201103 [arXiv:2101.12688] [INSPIRE].
G.U. Jakobsen, G. Mogull, J. Plefka and J. Steinhoff, Gravitational Bremsstrahlung and Hidden Supersymmetry of Spinning Bodies, Phys. Rev. Lett. 128 (2022) 011101 [arXiv:2106.10256] [INSPIRE].
G.U. Jakobsen, G. Mogull, J. Plefka and J. Steinhoff, SUSY in the sky with gravitons, JHEP 01 (2022) 027 [arXiv:2109.04465] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
C. Shi and J. Plefka, Classical double copy of worldline quantum field theory, Phys. Rev. D 105 (2022) 026007 [arXiv:2109.10345] [INSPIRE].
N.E.J. Bjerrum-Bohr, B.R. Holstein, J.F. Donoghue, L. Planté and P. Vanhove, Illuminating Light Bending, PoS CORFU2016 (2017) 077 [arXiv:1704.01624] [INSPIRE].
J.F. Donoghue, General relativity as an effective field theory: The leading quantum corrections, Phys. Rev. D 50 (1994) 3874 [gr-qc/9405057] [INSPIRE].
N.E.J. Bjerrum-Bohr, J.F. Donoghue and B.R. Holstein, Quantum gravitational corrections to the nonrelativistic scattering potential of two masses, Phys. Rev. D 67 (2003) 084033 [Erratum ibid. 71 (2005) 069903] [hep-th/0211072] [INSPIRE].
N.E.J. Bjerrum-Bohr, J.F. Donoghue and P. Vanhove, On-shell Techniques and Universal Results in Quantum Gravity, JHEP 02 (2014) 111 [arXiv:1309.0804] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
N.E.J. Bjerrum-Bohr, J.F. Donoghue, B.R. Holstein, L. Planté and P. Vanhove, Bending of Light in Quantum Gravity, Phys. Rev. Lett. 114 (2015) 061301 [arXiv:1410.7590] [INSPIRE].
N.E.J. Bjerrum-Bohr, J.F. Donoghue, B.R. Holstein, L. Plante and P. Vanhove, Light-like Scattering in Quantum Gravity, JHEP 11 (2016) 117 [arXiv:1609.07477] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
D. Bai and Y. Huang, More on the Bending of Light in Quantum Gravity, Phys. Rev. D 95 (2017) 064045 [arXiv:1612.07629] [INSPIRE].
N.E.J. Bjerrum-Bohr, J.F. Donoghue, B.K. El-Menoufi, B.R. Holstein, L. Planté and P. Vanhove, The Equivalence Principle in a Quantum World, Int. J. Mod. Phys. D 24 (2015) 1544013 [arXiv:1505.04974] [INSPIRE].
ADS
Article
Google Scholar
N.E.J. Bjerrum-Bohr, P.H. Damgaard, G. Festuccia, L. Planté and P. Vanhove, General Relativity from Scattering Amplitudes, Phys. Rev. Lett. 121 (2018) 171601 [arXiv:1806.04920] [INSPIRE].
D. Amati, M. Ciafaloni and G. Veneziano, Higher Order Gravitational Deflection and Soft Bremsstrahlung in Planckian Energy Superstring Collisions, Nucl. Phys. B 347 (1990) 550 [INSPIRE].
S. Melville, S.G. Naculich, H.J. Schnitzer and C.D. White, Wilson line approach to gravity in the high energy limit, Phys. Rev. D 89 (2014) 025009 [arXiv:1306.6019] [INSPIRE].
A. Luna, S. Melville, S.G. Naculich and C.D. White, Next-to-soft corrections to high energy scattering in QCD and gravity, JHEP 01 (2017) 052 [arXiv:1611.02172] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
R. Akhoury, R. Saotome and G. Sterman, High Energy Scattering in Perturbative Quantum Gravity at Next to Leading Power, Phys. Rev. D 103 (2021) 064036 [arXiv:1308.5204] [INSPIRE].
A. Koemans Collado, P. Di Vecchia and R. Russo, Revisiting the second post-Minkowskian eikonal and the dynamics of binary black holes, Phys. Rev. D 100 (2019) 066028 [arXiv:1904.02667] [INSPIRE].
A. Cristofoli, P.H. Damgaard, P. Di Vecchia and C. Heissenberg, Second-order Post-Minkowskian scattering in arbitrary dimensions, JHEP 07 (2020) 122 [arXiv:2003.10274] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
P. Di Vecchia, A. Luna, S.G. Naculich, R. Russo, G. Veneziano and C.D. White, A tale of two exponentiations in \( \mathcal{N} \) = 8 supergravity, Phys. Lett. B 798 (2019) 134927 [arXiv:1908.05603] [INSPIRE].
P. Di Vecchia, S.G. Naculich, R. Russo, G. Veneziano and C.D. White, A tale of two exponentiations in \( \mathcal{N} \) = 8 supergravity at subleading level, JHEP 03 (2020) 173 [arXiv:1911.11716] [INSPIRE].
Z. Bern, H. Ita, J. Parra-Martinez and M.S. Ruf, Universality in the classical limit of massless gravitational scattering, Phys. Rev. Lett. 125 (2020) 031601 [arXiv:2002.02459] [INSPIRE].
J. Parra-Martinez, M.S. Ruf and M. Zeng, Extremal black hole scattering at \( \mathcal{O} \)(G3): graviton dominance, eikonal exponentiation, and differential equations, JHEP 11 (2020) 023 [arXiv:2005.04236] [INSPIRE].
P. Di Vecchia, C. Heissenberg, R. Russo and G. Veneziano, The eikonal approach to gravitational scattering and radiation at \( \mathcal{O} \)(G3), JHEP 07 (2021) 169 [arXiv:2104.03256] [INSPIRE].
C. Heissenberg, Infrared divergences and the eikonal exponentiation, Phys. Rev. D 104 (2021) 046016 [arXiv:2105.04594] [INSPIRE].
P.H. Damgaard, L. Plante and P. Vanhove, On an exponential representation of the gravitational S-matrix, JHEP 11 (2021) 213 [arXiv:2107.12891] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
L. de la Cruz, A. Luna and T. Scheopner, Yang-Mills observables: from KMOC to eikonal through EFT, JHEP 01 (2022) 045 [arXiv:2108.02178] [INSPIRE].
MathSciNet
Article
Google Scholar
Z. Bern, A. Luna, R. Roiban, C.-H. Shen and M. Zeng, Spinning black hole binary dynamics, scattering amplitudes, and effective field theory, Phys. Rev. D 104 (2021) 065014 [arXiv:2005.03071] [INSPIRE].
M. Accettulli Huber, A. Brandhuber, S. De Angelis and G. Travaglini, Eikonal phase matrix, deflection angle and time delay in effective field theories of gravity, Phys. Rev. D 102 (2020) 046014 [arXiv:2006.02375] [INSPIRE].
D. Kosmopoulos and A. Luna, Quadratic-in-spin Hamiltonian at \( \mathcal{O} \)(G2) from scattering amplitudes, JHEP 07 (2021) 037 [arXiv:2102.10137] [INSPIRE].
A. Brandhuber, G. Chen, G. Travaglini and C. Wen, Classical gravitational scattering from a gauge-invariant double copy, JHEP 10 (2021) 118 [arXiv:2108.04216] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
R. Aoude and A. Ochirov, Classical observables from coherent-spin amplitudes, JHEP 10 (2021) 008 [arXiv:2108.01649] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
A. Cristofoli, R. Gonzo, D.A. Kosower and D. O’Connell, Waveforms from Amplitudes, arXiv:2107.10193 [INSPIRE].
D.A. Kosower, B. Maybee and D. O’Connell, Amplitudes, Observables, and Classical Scattering, JHEP 02 (2019) 137 [arXiv:1811.10950] [INSPIRE].
B. Maybee, D. O’Connell and J. Vines, Observables and amplitudes for spinning particles and black holes, JHEP 12 (2019) 156 [arXiv:1906.09260] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
L. de la Cruz, B. Maybee, D. O’Connell and A. Ross, Classical Yang-Mills observables from amplitudes, JHEP 12 (2020) 076 [arXiv:2009.03842] [INSPIRE].
MathSciNet
Article
Google Scholar
F. Bastianelli and P. van Nieuwenhuizen, Path integrals and anomalies in curved space, Cambridge Monographs on Mathematical Physics Cambridge University Press, Cambridge U.K. (2006).
F. Bastianelli, R. Bonezzi, O. Corradini and E. Latini, Extended SUSY quantum mechanics: transition amplitudes and path integrals, JHEP 06 (2011) 023 [arXiv:1103.3993] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
F. Bastianelli and A. Zirotti, Worldline formalism in a gravitational background, Nucl. Phys. B 642 (2002) 372 [hep-th/0205182] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
C. Schubert, Perturbative quantum field theory in the string inspired formalism, Phys. Rept. 355 (2001) 73 [hep-th/0101036] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
D. Amati, M. Ciafaloni and G. Veneziano, Superstring Collisions at Planckian Energies, Phys. Lett. B 197 (1987) 81 [INSPIRE].
F. Bastianelli and P. van Nieuwenhuizen, Trace anomalies from quantum mechanics, Nucl. Phys. B 389 (1993) 53 [hep-th/9208059] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
F. Bastianelli, P. Benincasa and S. Giombi, Worldline approach to vector and antisymmetric tensor fields, JHEP 04 (2005) 010 [hep-th/0503155] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
F. Bastianelli, P. Benincasa and S. Giombi, Worldline approach to vector and antisymmetric tensor fields. II, JHEP 10 (2005) 114 [hep-th/0510010] [INSPIRE].
F. Bastianelli, R. Bonezzi, O. Corradini and E. Latini, Particles with non abelian charges, JHEP 10 (2013) 098 [arXiv:1309.1608] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
F. Bastianelli, F. Comberiati and L. de la Cruz, Worldline description of a bi-adjoint scalar and the zeroth copy, JHEP 12 (2021) 023 [arXiv:2107.10130] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
F. Bastianelli and R. Bonezzi, One-loop quantum gravity from a worldline viewpoint, JHEP 07 (2013) 016 [arXiv:1304.7135] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
M.A. Oancea, C.F. Paganini, J. Joudioux and L. Andersson, An overview of the gravitational spin Hall effect, arXiv:1904.09963 [INSPIRE].
M.A. Oancea, J. Joudioux, I.Y. Dodin, D.E. Ruiz, C.F. Paganini and L. Andersson, Gravitational spin Hall effect of light, Phys. Rev. D 102 (2020) 024075 [arXiv:2003.04553] [INSPIRE].
L. Andersson, J. Joudioux, M.A. Oancea and A. Raj, Propagation of polarized gravitational waves, Phys. Rev. D 103 (2021) 044053 [arXiv:2012.08363] [INSPIRE].
N.E.J. Bjerrum-Bohr, B.R. Holstein, L. Planté and P. Vanhove, Graviton-Photon Scattering, Phys. Rev. D 91 (2015) 064008 [arXiv:1410.4148] [INSPIRE].
J. Plefka, J. Steinhoff and W. Wormsbecher, Effective action of dilaton gravity as the classical double copy of Yang-Mills theory, Phys. Rev. D 99 (2019) 024021 [arXiv:1807.09859] [INSPIRE].
G. Kälin and R.A. Porto, Post-Minkowskian Effective Field Theory for Conservative Binary Dynamics, JHEP 11 (2020) 106 [arXiv:2006.01184] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
T. Ono, A. Ishihara and H. Asada, Gravitomagnetic bending angle of light with finite-distance corrections in stationary axisymmetric spacetimes, Phys. Rev. D 96 (2017) 104037 [arXiv:1704.05615] [INSPIRE].
R. Kumar, B.P. Singh and S.G. Ghosh, Shadow and deflection angle of rotating black hole in asymptotically safe gravity, Annals Phys. 420 (2020) 168252 [arXiv:1904.07652] [INSPIRE].
F. Bastianelli and R. Bonezzi, Quantum theory of massless (p,0)-forms, JHEP 09 (2011) 018 [arXiv:1107.3661] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
F. Bastianelli, R. Bonezzi and C. Iazeolla, Quantum theories of (p,q)-forms, JHEP 08 (2012) 045 [arXiv:1204.5954] [INSPIRE].
E. Laenen, G. Stavenga and C.D. White, Path integral approach to eikonal and next-to-eikonal exponentiation, JHEP 03 (2009) 054 [arXiv:0811.2067] [INSPIRE].
ADS
Article
Google Scholar
C.D. White, Factorization Properties of Soft Graviton Amplitudes, JHEP 05 (2011) 060 [arXiv:1103.2981] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
D. Bonocore, A. Kulesza and J. Pirsch, Classical and quantum gravitational scattering with Generalized Wilson Lines, arXiv:2112.02009 [INSPIRE].
D. Bonocore, Asymptotic dynamics on the worldline for spinning particles, JHEP 02 (2021) 007 [arXiv:2009.07863] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
M. Difallah, A. Szameit and M. Ornigotti, Path-integral description of quantum nonlinear optics in arbitrary media, Phys. Rev. A 100 (2019) 053845 [arXiv:1904.02548] [INSPIRE].