Abstract
We discuss anomalies associated with outer automorphisms in gauge theories based on classical groups, namely charge conjugations for SU(N ) and parities for SO(2r). We emphasize the inequivalence (yet related by a flavor transformation) between two versions of charge conjugation for SU(2k), SO(2r), and E6 symmetries. The subgroups that commute with the outer automorphisms are identified. Some charge conjugations can lead to a paradox, which is resolved by the observation that they are anomalous and hence not symmetries. We then discuss anomaly matching conditions that involve the charge conjugations or parities. Interesting examples are given where the charge conjugation is spontaneously broken.
Article PDF
Similar content being viewed by others
Avoid common mistakes on your manuscript.
References
L. Graf, B. Henning, X. Lu, T. Melia and H. Murayama, 2, 12, 117, 1959, 45171, 1170086, . . . : a Hilbert series for the QCD chiral Lagrangian, JHEP 01 (2021) 142 [arXiv:2009.01239] [INSPIRE].
B. Henning, X. Lu, T. Melia and H. Murayama, Operator bases, S-matrices, and their partition functions, JHEP 10 (2017) 199 [arXiv:1706.08520] [INSPIRE].
S.L. Adler, Axial vector vertex in spinor electrodynamics, Phys. Rev. 177 (1969) 2426 [INSPIRE].
J.S. Bell and R. Jackiw, A PCAC puzzle: π0 → γγ in the σ model, Nuovo Cim. A 60 (1969) 47 [INSPIRE].
G. ’t Hooft, Naturalness, chiral symmetry, and spontaneous chiral symmetry breaking, NATO Sci. Ser. B 59 (1980) 135 [INSPIRE].
H. Murayama, Some Exact Results in QCD-like Theories, Phys. Rev. Lett. 126 (2021) 251601 [arXiv:2104.01179] [INSPIRE].
C. Csáki, H. Murayama and O. Telem, Some exact results in chiral gauge theories, Phys. Rev. D 104 (2021) 065018 [arXiv:2104.10171] [INSPIRE].
C. Csáki, H. Murayama and O. Telem, More Exact Results on Chiral Gauge Theories: the Case of the Symmetric Tensor, arXiv:2105.03444 [INSPIRE].
C. Csáki, A. Gomes, H. Murayama and O. Telem, Demonstration of Confinement and Chiral Symmetry Breaking in SO(N C ) Gauge Theories, Phys. Rev. Lett. 127 (2021) 251602 [arXiv:2106.10288] [INSPIRE].
C. Csáki, A. Gomes, H. Murayama and O. Telem, Phases of nonsupersymmetric gauge theories: The SO(N C ) case study, Phys. Rev. D 104 (2021) 114018 [arXiv:2107.02813] [INSPIRE].
L.E. Ibáñez and G.G. Ross, Discrete gauge symmetry anomalies, Phys. Lett. B 260 (1991) 291 [INSPIRE].
J. Preskill, S.P. Trivedi, F. Wilczek and M.B. Wise, Cosmology and broken discrete symmetry, Nucl. Phys. B 363 (1991) 207 [INSPIRE].
T. Banks and M. Dine, Note on discrete gauge anomalies, Phys. Rev. D 45 (1992) 1424 [hep-th/9109045] [INSPIRE].
L.E. Ibáñez, More about discrete gauge anomalies, Nucl. Phys. B 398 (1993) 301 [hep-ph/9210211] [INSPIRE].
C. Csáki and H. Murayama, Discrete anomaly matching, Nucl. Phys. B 515 (1998) 114 [hep-th/9710105] [INSPIRE].
T. Araki, Anomaly of Discrete Symmetries and Gauge Coupling Unification, Prog. Theor. Phys. 117 (2007) 1119 [hep-ph/0612306] [INSPIRE].
T. Araki, T. Kobayashi, J. Kubo, S. Ramos-Sanchez, M. Ratz and P.K.S. Vaudrevange, (Non-)Abelian discrete anomalies, Nucl. Phys. B 805 (2008) 124 [arXiv:0805.0207] [INSPIRE].
C.-T. Hsieh, Discrete gauge anomalies revisited, arXiv:1808.02881 [INSPIRE].
A. Bourget, A. Pini and D. Rodríguez-Gómez, Gauge theories from principally extended disconnected gauge groups, Nucl. Phys. B 940 (2019) 351 [arXiv:1804.01108] [INSPIRE].
G. Arias-Tamargo, A. Bourget, A. Pini and D. Rodríguez-Gómez, Discrete gauge theories of charge conjugation, Nucl. Phys. B 946 (2019) 114721 [arXiv:1903.06662] [INSPIRE].
N. Seiberg, Electric-magnetic duality in supersymmetric nonAbelian gauge theories, Nucl. Phys. B 435 (1995) 129 [hep-th/9411149] [INSPIRE].
D. Kutasov, A Comment on duality in N = 1 supersymmetric nonAbelian gauge theories, Phys. Lett. B 351 (1995) 230 [hep-th/9503086] [INSPIRE].
K.A. Intriligator, R.G. Leigh and M.J. Strassler, New examples of duality in chiral and nonchiral supersymmetric gauge theories, Nucl. Phys. B 456 (1995) 567 [hep-th/9506148] [INSPIRE].
K.A. Intriligator and N. Seiberg, Duality, monopoles, dyons, confinement and oblique confinement in supersymmetric SO(N (c)) gauge theories, Nucl. Phys. B 444 (1995) 125 [hep-th/9503179] [INSPIRE].
C. Csáki, M. Schmaltz and W. Skiba, Confinement in N = 1 SUSY gauge theories and model building tools, Phys. Rev. D 55 (1997) 7840 [hep-th/9612207] [INSPIRE].
K. Saito, Extended affine root systems I (Coxeter transformations), Publ. RIMS Kyoto Univ. 21 (1985) 75.
J. Fuchs, U. Ray and C. Schweigert, Some automorphisms of generalized Kac-Moody algebras, J. Algebra 191 (1997) 518 [q-alg/9605046] [INSPIRE].
J. Fuchs, U. Ray, B. Schellekens and C. Schweigert, Twining characters and orbit Lie algebras, in 21st International Colloquium on Group Theoretical Methods in Physics, Goslar Germany (1996) [hep-th/9612060] [INSPIRE].
C. Vafa and E. Witten, Restrictions on Symmetry Breaking in Vector-Like Gauge Theories, Nucl. Phys. B 234 (1984) 173 [INSPIRE].
G. Arias-Tamargo, A. Bourget and A. Pini, Discrete gauging and Hasse diagrams, SciPost Phys. 11 (2021) 026 [arXiv:2105.08755] [INSPIRE].
D. Gaiotto, A. Kapustin, Z. Komargodski and N. Seiberg, Theta, Time Reversal, and Temperature, JHEP 05 (2017) 091 [arXiv:1703.00501] [INSPIRE].
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
ArXiv ePrint: 2111.04728
Hamamatsu Professor. (Hitoshi Murayama)
Rights and permissions
Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.
About this article
Cite this article
Henning, B., Lu, X., Melia, T. et al. Outer automorphism anomalies. J. High Energ. Phys. 2022, 94 (2022). https://doi.org/10.1007/JHEP02(2022)094
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/JHEP02(2022)094