Skip to main content
SpringerLink
Log in
Menu
Find a journal Publish with us
Search
Cart
  1. Home
  2. Journal of High Energy Physics
  3. Article

Baryonic Higgs and dark matter

  • Regular Article - Theoretical Physics
  • Open Access
  • Published: 18 February 2021
  • volume 2021, Article number: 163 (2021)
Download PDF

You have full access to this open access article

Journal of High Energy Physics Aims and scope Submit manuscript
Baryonic Higgs and dark matter
Download PDF
  • Pavel Fileviez Pérez1,
  • Clara Murgui2 &
  • Alexis D. Plascencia1 
  • 168 Accesses

  • 2 Citations

  • Explore all metrics

  • Cite this article

A preprint version of the article is available at arXiv.

Abstract

We discuss the correlation between dark matter and Higgs decays in gauge theories where the dark matter is predicted from anomaly cancellation. In these theories, the Higgs responsible for the breaking of the gauge symmetry generates the mass for the dark matter candidate. We investigate the Higgs decays in the minimal gauge theory for Baryon number. After imposing the dark matter density and direct detection constraints, we find that the new Higgs can have a large branching ratio into two photons or into dark matter. Furthermore, we discuss the production channels and the unique signatures at the Large Hadron Collider.

Download to read the full article text

Working on a manuscript?

Avoid the common mistakes

References

  1. V. Silveira and A. Zee, Scalar phantoms, Phys. Lett. B 161 (1985) 136 [INSPIRE].

    Article  ADS  Google Scholar 

  2. J. McDonald, Gauge singlet scalars as cold dark matter, Phys. Rev. D 50 (1994) 3637 [hep-ph/0702143] [INSPIRE].

  3. B. Patt and F. Wilczek, Higgs-field portal into hidden sectors, hep-ph/0605188 [INSPIRE].

  4. ATLAS collaboration, Search for invisible Higgs boson decays with vector boson fusion signatures with the ATLAS detector using an integrated luminosity of 139 fb−1, ATLAS-CONF-2020-008 (2020).

  5. ATLAS collaboration, Combination of searches for invisible Higgs boson decays with the ATLAS experiment, Phys. Rev. Lett. 122 (2019) 231801 [arXiv:1904.05105].

  6. CMS collaboration, Search for invisible decays of a Higgs boson produced through vector boson fusion in proton-proton collisions at \( \sqrt{s} \) = 13 TeV, Phys. Lett. B 793 (2019) 520 [arXiv:1809.05937] [INSPIRE].

  7. P. Fileviez Perez, S. Ohmer and H.H. Patel, Minimal theory for lepto-baryons, Phys. Lett. B 735 (2014) 283 [arXiv:1403.8029] [INSPIRE].

    Article  ADS  Google Scholar 

  8. P. Fileviez Perez and M.B. Wise, Breaking local baryon and lepton number at the TeV scale, JHEP 08 (2011) 068 [arXiv:1106.0343] [INSPIRE].

    Article  Google Scholar 

  9. M. Duerr, P. Fileviez Perez and M.B. Wise, Gauge theory for baryon and lepton numbers with leptoquarks, Phys. Rev. Lett. 110 (2013) 231801 [arXiv:1304.0576] [INSPIRE].

    Article  ADS  Google Scholar 

  10. A. Ilnicka, T. Robens and T. Stefaniak, Constraining extended scalar sectors at the LHC and beyond, Mod. Phys. Lett. A 33 (2018) 1830007 [arXiv:1803.03594] [INSPIRE].

    Article  ADS  Google Scholar 

  11. P. Fileviez Pérez, E. Golias, R.-H. Li, C. Murgui and A.D. Plascencia, Anomaly-free dark matter models, Phys. Rev. D 100 (2019) 015017 [arXiv:1904.01017] [INSPIRE].

  12. S. Ohmer and H.H. Patel, Leptobaryons as Majorana dark matter, Phys. Rev. D 92 (2015) 055020 [arXiv:1506.00954] [INSPIRE].

  13. M. Duerr, P.F. Pérez and J. Smirnov, Baryonic Higgs at the LHC, JHEP 09 (2017) 093 [arXiv:1704.03811] [INSPIRE].

    Article  ADS  Google Scholar 

  14. M. Duerr, A. Grohsjean, F. Kahlhoefer, B. Penning, K. Schmidt-Hoberg and C. Schwanenberger, Hunting the dark Higgs, JHEP 04 (2017) 143 [arXiv:1701.08780] [INSPIRE].

    Article  ADS  Google Scholar 

  15. M. Duerr and P. Fileviez Perez, Theory for baryon number and dark matter at the LHC, Phys. Rev. D 91 (2015) 095001 [arXiv:1409.8165] [INSPIRE].

  16. P.F. Pérez, E. Golias, C. Murgui and A.D. Plascencia, The Higgs and leptophobic force at the LHC, JHEP 07 (2020) 087 [arXiv:2003.09426] [INSPIRE].

    Article  ADS  Google Scholar 

  17. P. Fileviez Pérez, E. Golias, R.-H. Li and C. Murgui, Leptophobic dark matter and the baryon number violation scale, Phys. Rev. D 99 (2019) 035009 [arXiv:1810.06646] [INSPIRE].

  18. P. Fileviez Perez and A.D. Plascencia, Electric dipole moments, new forces and dark matter, arXiv:2008.09116 [INSPIRE].

  19. Planck collaboration, Planck 2018 results. VI. Cosmological parameters, Astron. Astrophys. 641 (2020) A6 [arXiv:1807.06209] [INSPIRE].

  20. XENON collaboration, Dark matter search results from a one ton-year exposure of XENON1T, Phys. Rev. Lett. 121 (2018) 111302 [arXiv:1805.12562] [INSPIRE].

  21. XENON collaboration, Physics reach of the XENON1T dark matter experiment, JCAP 04 (2016) 027 [arXiv:1512.07501] [INSPIRE].

  22. G. Bélanger, F. Boudjema, A. Goudelis, A. Pukhov and B. Zaldivar, MicrOMEGAs5.0: Freeze-in, Comput. Phys. Commun. 231 (2018) 173 [arXiv:1801.03509] [INSPIRE].

  23. ATLAS collaboration, Search for new phenomena in events with jets and missing transverse momentum in pp collisions at \( \sqrt{s} \) = 13 TeV with the ATLAS detector, arXiv:2102.01444.

  24. M. Hoferichter, P. Klos, J. Menéndez and A. Schwenk, Improved limits for Higgs-portal dark matter from LHC searches, Phys. Rev. Lett. 119 (2017) 181803 [arXiv:1708.02245] [INSPIRE].

    Article  ADS  Google Scholar 

  25. XENON collaboration, First dark matter search results from the XENON1T experiment, Phys. Rev. Lett. 119 (2017) 181301 [arXiv:1705.06655] [INSPIRE].

  26. J. Billard, L. Strigari and E. Figueroa-Feliciano, Implication of neutrino backgrounds on the reach of next generation dark matter direct detection experiments, Phys. Rev. D 89 (2014) 023524 [arXiv:1307.5458] [INSPIRE].

  27. J. Alwall et al., The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations, JHEP 07 (2014) 079 [arXiv:1405.0301] [INSPIRE].

  28. A.D. Martin, W.J. Stirling, R.S. Thorne and G. Watt, Parton distributions for the LHC, Eur. Phys. J. C 63 (2009) 189 [arXiv:0901.0002] [INSPIRE].

    Article  ADS  Google Scholar 

  29. ATLAS collaboration, RECAST framework reinterpretation of an ATLAS dark matter search constraining a model of a dark Higgs boson decaying to two b-quarks, ATL-PHYS-PUB-2019-032 (2019).

  30. H.H. Patel, Package-X: a Mathematica package for the analytic calculation of one-loop integrals, Comput. Phys. Commun. 197 (2015) 276 [arXiv:1503.01469] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Physics Department and Center for Education and Research in Cosmology and Astrophysics, (CERCA), Case Western Reserve University, Cleveland, OH, 44106, USA

    Pavel Fileviez Pérez & Alexis D. Plascencia

  2. Walter Burke Institute for Theoretical Physics, California Institute of Technology, Pasadena, CA, 91125, USA

    Clara Murgui

Authors
  1. Pavel Fileviez Pérez
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Clara Murgui
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Alexis D. Plascencia
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Clara Murgui.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

ArXiv ePrint: 2012.06599

Rights and permissions

Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pérez, P.F., Murgui, C. & Plascencia, A.D. Baryonic Higgs and dark matter. J. High Energ. Phys. 2021, 163 (2021). https://doi.org/10.1007/JHEP02(2021)163

Download citation

  • Received: 23 December 2020

  • Accepted: 06 January 2021

  • Published: 18 February 2021

  • DOI: https://doi.org/10.1007/JHEP02(2021)163

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Beyond Standard Model
  • Cosmology of Theories beyond the SM

Working on a manuscript?

Avoid the common mistakes

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Publish your research
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our imprints

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support

Not affiliated

Springer Nature

© 2023 Springer Nature