I. R. Klebanov and E. Witten, Superconformal field theory on three-branes at a Calabi-Yau singularity, Nucl. Phys. B 536 (1998) 199 [hep-th/9807080] [INSPIRE].
ADS
MATH
Google Scholar
I. R. Klebanov and N. A. Nekrasov, Gravity duals of fractional branes and logarithmic RG flow, Nucl. Phys. B 574 (2000) 263 [hep-th/9911096] [INSPIRE].
ADS
MathSciNet
MATH
Google Scholar
I. R. Klebanov and A. A. Tseytlin, Gravity duals of supersymmetric SU(N) × SU(N + M) gauge theories, Nucl. Phys. B 578 (2000) 123 [hep-th/0002159] [INSPIRE].
ADS
MathSciNet
MATH
Google Scholar
I. R. Klebanov and M. J. Strassler, Supergravity and a confining gauge theory: Duality cascades and χSB-resolution of naked singularities, JHEP 08 (2000) 052 [hep-th/0007191] [INSPIRE].
ADS
MathSciNet
MATH
Google Scholar
J. P. Gauntlett, D. Martelli, J. Sparks and D. Waldram, Sasaki-Einstein metrics on S2 × S3, Adv. Theor. Math. Phys. 8 (2004) 711 [hep-th/0403002] [INSPIRE].
MathSciNet
MATH
Google Scholar
M. Bertolini, F. Bigazzi and A. L. Cotrone, New checks and subtleties for AdS/CFT and a-maximization, JHEP 12 (2004) 024 [hep-th/0411249] [INSPIRE].
ADS
MathSciNet
Google Scholar
S. Benvenuti, S. Franco, A. Hanany, D. Martelli and J. Sparks, An Infinite family of superconformal quiver gauge theories with Sasaki-Einstein duals, JHEP 06 (2005) 064 [hep-th/0411264] [INSPIRE].
ADS
MathSciNet
Google Scholar
M. Cvetič, H. Lü, D. N. Page and C. N. Pope, New Einstein-Sasaki spaces in five and higher dimensions, Phys. Rev. Lett. 95 (2005) 071101 [hep-th/0504225] [INSPIRE].
ADS
MathSciNet
Google Scholar
S. Franco, A. Hanany, D. Martelli, J. Sparks, D. Vegh and B. Wecht, Gauge theories from toric geometry and brane tilings, JHEP 01 (2006) 128 [hep-th/0505211] [INSPIRE].
ADS
MathSciNet
Google Scholar
A. Butti, D. Forcella and A. Zaffaroni, The Dual superconformal theory for Lp,q,r manifolds, JHEP 09 (2005) 018 [hep-th/0505220] [INSPIRE].
ADS
MathSciNet
Google Scholar
G. Aldazabal, L. E. Ibáñez, F. Quevedo and A. M. Uranga, D-branes at singularities: A Bottom up approach to the string embedding of the standard model, JHEP 08 (2000) 002 [hep-th/0005067] [INSPIRE].
ADS
MathSciNet
MATH
Google Scholar
D. Berenstein, V. Jejjala and R. G. Leigh, The Standard model on a D-brane, Phys. Rev. Lett. 88 (2002) 071602 [hep-ph/0105042] [INSPIRE].
ADS
MathSciNet
Google Scholar
H. Verlinde and M. Wijnholt, Building the standard model on a D3-brane, JHEP 01 (2007) 106 [hep-th/0508089] [INSPIRE].
ADS
MathSciNet
Google Scholar
M. Buican, D. Malyshev, D. R. Morrison, H. Verlinde and M. Wijnholt, D-branes at Singularities, Compactification, and Hypercharge, JHEP 01 (2007) 107 [hep-th/0610007] [INSPIRE].
ADS
MathSciNet
Google Scholar
D. Malyshev and H. Verlinde, D-branes at singularities and string phenomenology, Nucl. Phys. B Proc. Suppl. 171 (2007) 139 [arXiv:0711.2451] [INSPIRE].
ADS
MathSciNet
Google Scholar
B. Feng, A. Hanany and Y.-H. He, D-brane gauge theories from toric singularities and toric duality, Nucl. Phys. B 595 (2001) 165 [hep-th/0003085] [INSPIRE].
ADS
MathSciNet
MATH
Google Scholar
B. Feng, A. Hanany and Y.-H. He, Phase structure of D-brane gauge theories and toric duality, JHEP 08 (2001) 040 [hep-th/0104259] [INSPIRE].
ADS
MathSciNet
Google Scholar
C. E. Beasley and M. R. Plesser, Toric duality is Seiberg duality, JHEP 12 (2001) 001 [hep-th/0109053] [INSPIRE].
ADS
MathSciNet
Google Scholar
B. Feng, A. Hanany, Y.-H. He and A. M. Uranga, Toric duality as Seiberg duality and brane diamonds, JHEP 12 (2001) 035 [hep-th/0109063] [INSPIRE].
ADS
MathSciNet
Google Scholar
B. Feng, S. Franco, A. Hanany and Y.-H. He, Symmetries of toric duality, JHEP 12 (2002) 076 [hep-th/0205144] [INSPIRE].
ADS
MathSciNet
Google Scholar
D. Berenstein and M. R. Douglas, Seiberg duality for quiver gauge theories, hep-th/0207027 [INSPIRE].
A. Hanany and K. D. Kennaway, Dimer models and toric diagrams, hep-th/0503149 [INSPIRE].
S. Franco, A. Hanany, K. D. Kennaway, D. Vegh and B. Wecht, Brane dimers and quiver gauge theories, JHEP 01 (2006) 096 [hep-th/0504110] [INSPIRE].
ADS
MathSciNet
Google Scholar
A. Sagnotti, Open Strings and their Symmetry Groups, in NATO Advanced Summer Institute on Nonperturbative Quantum Field Theory (Cargese Summer Institute), pp. 0521–528 (1987) [hep-th/0208020] [INSPIRE].
G. Pradisi and A. Sagnotti, Open String Orbifolds, Phys. Lett. B 216 (1989) 59 [INSPIRE].
ADS
MathSciNet
Google Scholar
P. Hořava, Strings on World Sheet Orbifolds, Nucl. Phys. B 327 (1989) 461 [INSPIRE].
ADS
MathSciNet
Google Scholar
J. Dai, R. G. Leigh and J. Polchinski, New Connections Between String Theories, Mod. Phys. Lett. A 4 (1989) 2073 [INSPIRE].
ADS
MathSciNet
Google Scholar
M. Bianchi and A. Sagnotti, On the systematics of open string theories, Phys. Lett. B 247 (1990) 517 [INSPIRE].
ADS
MathSciNet
Google Scholar
M. Bianchi and A. Sagnotti, Twist symmetry and open string Wilson lines, Nucl. Phys. B 361 (1991) 519 [INSPIRE].
ADS
MathSciNet
Google Scholar
E. G. Gimon and J. Polchinski, Consistency conditions for orientifolds and d manifolds, Phys. Rev. D 54 (1996) 1667 [hep-th/9601038] [INSPIRE].
ADS
MathSciNet
Google Scholar
M. R. Douglas and G. W. Moore, D-branes, quivers, and ALE instantons, hep-th/9603167 [INSPIRE].
S. Franco, A. Hanany, D. Krefl, J. Park, A. M. Uranga and D. Vegh, Dimers and orientifolds, JHEP 09 (2007) 075 [arXiv:0707.0298] [INSPIRE].
ADS
MathSciNet
Google Scholar
R. Argurio and M. Bertolini, Orientifolds and duality cascades: confinement before the wall, JHEP 02 (2018) 149 [arXiv:1711.08983] [INSPIRE].
ADS
MathSciNet
MATH
Google Scholar
R. Argurio, M. Bertolini, G. Ferretti, A. Lerda and C. Petersson, Stringy instantons at orbifold singularities, JHEP 06 (2007) 067 [arXiv:0704.0262] [INSPIRE].
ADS
MathSciNet
Google Scholar
M. Bianchi, F. Fucito and J. F. Morales, D-brane instantons on the T6/Z3 orientifold, JHEP 07 (2007) 038 [arXiv:0704.0784] [INSPIRE].
ADS
Google Scholar
R. Blumenhagen, M. Cvetič, S. Kachru and T. Weigand, D-Brane Instantons in Type II Orientifolds, Ann. Rev. Nucl. Part. Sci. 59 (2009) 269 [arXiv:0902.3251] [INSPIRE].
ADS
Google Scholar
R. Argurio, M. Bertolini, S. Franco and S. Kachru, Meta-stable vacua and D-branes at the conifold, JHEP 06 (2007) 017 [hep-th/0703236] [INSPIRE].
ADS
MATH
Google Scholar
D. Berenstein, C. P. Herzog, P. Ouyang and S. Pinansky, Supersymmetry breaking from a Calabi-Yau singularity, JHEP 09 (2005) 084 [hep-th/0505029] [INSPIRE].
ADS
MathSciNet
Google Scholar
S. Franco, A. Hanany, F. Saad and A. M. Uranga, Fractional branes and dynamical supersymmetry breaking, JHEP 01 (2006) 011 [hep-th/0505040] [INSPIRE].
ADS
MathSciNet
Google Scholar
M. Bertolini, F. Bigazzi and A. L. Cotrone, Supersymmetry breaking at the end of a cascade of Seiberg dualities, Phys. Rev. D 72 (2005) 061902 [hep-th/0505055] [INSPIRE].
ADS
MathSciNet
Google Scholar
G. Buratti, E. García-Valdecasas and A. M. Uranga, Supersymmetry Breaking Warped Throats and the Weak Gravity Conjecture, JHEP 04 (2019) 111 [arXiv:1810.07673] [INSPIRE].
ADS
MathSciNet
MATH
Google Scholar
R. Argurio, M. Bertolini, S. Meynet and A. Pasternak, On supersymmetry breaking vacua from D-branes at orientifold singularities, JHEP 12 (2019) 145 [arXiv:1909.04682] [INSPIRE].
ADS
MathSciNet
MATH
Google Scholar
R. G. Leigh and M. Rozali, Brane boxes, anomalies, bending and tadpoles, Phys. Rev. D 59 (1999) 026004 [hep-th/9807082] [INSPIRE].
ADS
MathSciNet
Google Scholar
M. Bianchi and J. F. Morales, Anomalies & tadpoles, JHEP 03 (2000) 030 [hep-th/0002149] [INSPIRE].
ADS
MathSciNet
MATH
Google Scholar
M. Bianchi, G. Inverso, J. F. Morales and D. Ricci Pacifici, Unoriented Quivers with Flavour, JHEP 01 (2014) 128 [arXiv:1307.0466] [INSPIRE].
ADS
Google Scholar
S. Franco, A. Retolaza and A. Uranga, D-brane Instantons as Gauge Instantons in Orientifolds of Chiral Quiver Theories, JHEP 11 (2015) 165 [arXiv:1507.05330] [INSPIRE].
ADS
MathSciNet
MATH
Google Scholar
J. Park, R. Rabadán and A. M. Uranga, Orientifolding the conifold, Nucl. Phys. B 570 (2000) 38 [hep-th/9907086] [INSPIRE].
ADS
MathSciNet
MATH
Google Scholar
M. Bianchi, D. Bufalini, S. Mancani and F. Riccioni, Mass deformations of unoriented quiver theories, JHEP 07 (2020) 015 [arXiv:2003.09620] [INSPIRE].
ADS
MathSciNet
MATH
Google Scholar
A. Hanany and D. Vegh, Quivers, tilings, branes and rhombi, JHEP 10 (2007) 029 [hep-th/0511063] [INSPIRE].
ADS
MathSciNet
Google Scholar
B. Feng, Y.-H. He, K. D. Kennaway and C. Vafa, Dimer models from mirror symmetry and quivering amoebae, Adv. Theor. Math. Phys. 12 (2008) 489 [hep-th/0511287] [INSPIRE].
MathSciNet
MATH
Google Scholar
S. Franco and D. Vegh, Moduli spaces of gauge theories from dimer models: Proof of the correspondence, JHEP 11 (2006) 054 [hep-th/0601063] [INSPIRE].
ADS
MathSciNet
Google Scholar
D.-E. Diaconescu, M. R. Douglas and J. Gomis, Fractional branes and wrapped branes, JHEP 02 (1998) 013 [hep-th/9712230] [INSPIRE].
ADS
MathSciNet
MATH
Google Scholar
A. Butti, Deformations of Toric Singularities and Fractional Branes, JHEP 10 (2006) 080 [hep-th/0603253] [INSPIRE].
ADS
MathSciNet
Google Scholar
A. M. Uranga, D-brane probes, RR tadpole cancellation and k-theory charge, Nucl. Phys. B 598 (2001) 225 [hep-th/0011048] [INSPIRE].
ADS
MathSciNet
MATH
Google Scholar
L. E. Ibáñez, R. Rabadán and A. M. Uranga, Anomalous U(1)’s in type-I and type IIB D = 4, N = 1 string vacua, Nucl. Phys. B 542 (1999) 112 [hep-th/9808139] [INSPIRE].
ADS
MathSciNet
MATH
Google Scholar
S. Benvenuti, A. Hanany and P. Kazakopoulos, The Toric phases of the Yp,q quivers, JHEP 07 (2005) 021 [hep-th/0412279] [INSPIRE].
ADS
MathSciNet
Google Scholar
A. Butti and A. Zaffaroni, From toric geometry to quiver gauge theory: The Equivalence of a-maximization and Z-minimization, Fortsch. Phys. 54 (2006) 309 [hep-th/0512240] [INSPIRE].
ADS
MathSciNet
MATH
Google Scholar
J. S. Scott, Grassmannians and cluster algebras, Proc. Lond. Math. Soc. 92 (2006) 345.
MathSciNet
MATH
Google Scholar
A. B. Goncharov and R. Kenyon, Dimers and cluster integrable systems, Annales Sci. École Norm. Sup. 46 (2013) 747 arXiv:1107.5588 [INSPIRE].
V.V. Fock, Inverse spectral problem for GK integrable system, arXiv:1503.00289.
B. Feng, S. Franco, A. Hanany and Y.-H. He, UnHiggsing the del Pezzo, JHEP 08 (2003) 058 [hep-th/0209228] [INSPIRE].
ADS
MathSciNet
Google Scholar
Y. Imamura, K. Kimura and M. Yamazaki, Anomalies and O-plane charges in orientifolded brane tilings, JHEP 03 (2008) 058 [arXiv:0801.3528] [INSPIRE].
ADS
MathSciNet
Google Scholar
I. García-Etxebarria and B. Heidenreich, Strongly coupled phases of \( \mathcal{N} \) = 1 S-duality, JHEP 09 (2015) 032 [arXiv:1506.03090] [INSPIRE].
MathSciNet
MATH
Google Scholar
I. García-Etxebarria and B. Heidenreich, S-duality in \( \mathcal{N} \) = 1 orientifold SCFTs, Fortsch. Phys. 65 (2017) 1700013 [arXiv:1612.00853] [INSPIRE].
ADS
MathSciNet
MATH
Google Scholar
A. Retolaza and A. Uranga, Orientifolds of Warped Throats from Toric Calabi-Yau Singularities, JHEP 07 (2016) 135 [arXiv:1605.01732] [INSPIRE].
ADS
MathSciNet
MATH
Google Scholar
M. Yamazaki, Brane Tilings and Their Applications, Fortsch. Phys. 56 (2008) 555 [arXiv:0803.4474] [INSPIRE].
ADS
MathSciNet
MATH
Google Scholar
R. Argurio et al., The Octagon and the Non-Supersymmetric String Landscape, arXiv:2005.09671 [INSPIRE].
R. Argurio et al., Dimers, Orientifolds and Stability of Supersymmetry Breaking Vacua, JHEP 01 (2021) 061 [arXiv:2007.13762] [INSPIRE].
ADS
MATH
Google Scholar
M. Bianchi, S. Cremonesi, A. Hanany, J. F. Morales, D. Ricci Pacifici and R.-K. Seong, Mass-deformed Brane Tilings, JHEP 10 (2014) 027 [arXiv:1408.1957] [INSPIRE].
ADS
Google Scholar