Skip to main content
SpringerLink
Log in
Menu
Find a journal Publish with us
Search
Go to cart
  1. Home
  2. Journal of High Energy Physics
  3. Article
CP violating effects in 210Fr and prospects for new physics beyond the Standard Model
Download PDF
Your article has downloaded

Similar articles being viewed by others

Slider with three articles shown per slide. Use the Previous and Next buttons to navigate the slides or the slide controller buttons at the end to navigate through each slide.

Contribution of the Weinberg-type operator to atomic and nuclear electric dipole moments

14 June 2022

Naohiro Osamura, Philipp Gubler & Nodoka Yamanaka

Constraining CP-violating electron-gluonic operators

15 July 2019

Kingman Cheung, Wai-Yee Keung, … Chen Zhang

Limits on CP-violating hadronic interactions and proton EDM from paramagnetic molecules

13 October 2020

V. V. Flambaum, I. B. Samsonov & H. B. Tran Tan

CP violation from charged Higgs bosons in the three Higgs doublet model

21 July 2021

Heather E. Logan, Stefano Moretti, … Muyuan Song

Effective field theory in the study of long range nuclear parity violation on lattice

14 January 2019

Feng-Kun Guo & Chien-Yeah Seng

The CKM phase and θ ¯ $$ \overline{\theta} $$ in Nelson-Barr models

26 July 2021

Alessandro Valenti & Luca Vecchi

First-generation new physics in simplified models: from low-energy parity violation to the LHC

27 October 2021

Andreas Crivellin, Martin Hoferichter, … Luc Schnell

Bounds on CP-violating Higgs-gluon interactions: the case of vanishing light-quark Yukawa couplings

21 November 2019

Ulrich Haisch & Amando Hala

On the sensitivity of the D parameter to new physics

15 December 2022

Adam Falkowski & Antonio Rodríguez-Sánchez

Download PDF
  • Regular Article - Theoretical Physics
  • Open Access
  • Published: 15 February 2021

CP violating effects in 210Fr and prospects for new physics beyond the Standard Model

  • Nanako Shitara1,7,
  • Nodoka Yamanaka2,3,4,
  • Bijaya Kumar Sahoo5,
  • Toshio Watanabe6 &
  • …
  • Bhanu Pratap Das1,8 

Journal of High Energy Physics volume 2021, Article number: 124 (2021) Cite this article

  • 270 Accesses

  • 14 Citations

  • 1 Altmetric

  • Metrics details

A preprint version of the article is available at arXiv.

Abstract

We report theoretical results of the electric dipole moment (EDM) of 210Fr which arises from the interaction of the EDM of an electron with the internal electric field in an atom and the scalar-pseudoscalar electron-nucleus interaction; the two dominant sources of CP violation in this atom. Employing the relativistic coupled-cluster theory, we evaluate the enhancement factors for these two CP violating interactions to an accuracy of about 3% and analyze the contributions of the many-body effects. These two quantities in combination with the projected sensitivity of the 210Fr EDM experiment provide constraints on new physics beyond the Standard Model. Particularly, we demonstrate that their precise values are necessary to account for the effect of the bottom quark in models in which the Higgs sector is augmented by nonstandard Yukawa interactions such as the two-Higgs doublet model.

Download to read the full article text

Working on a manuscript?

Avoid the common mistakes

References

  1. L. Canetti, M. Drewes and M. Shaposhnikov, Matter and Antimatter in the Universe, New J. Phys. 14 (2012) 095012 [arXiv:1204.4186] [INSPIRE].

  2. L. Landau, On the conservation laws for weak interactions, Nucl. Phys. 3 (1957) 127.

    Article  MathSciNet  Google Scholar 

  3. L.E. Ballentine, Quantum Mechanics: A Modern Development, World Scientific, Singapore (1998).

    Book  Google Scholar 

  4. P.G.H. Sandars, The electric-dipole moments of an atom I. Some general considerations, J. Phys. B 1 (1968) 499.

    Article  ADS  Google Scholar 

  5. I.B. Kriplovich and S.K. Lamoureaux, CP Violation Without Strangeness, Springer, London U.K. (2011).

    Google Scholar 

  6. Y. Yamaguchi and N. Yamanaka, Large long-distance contributions to the electric dipole moments of charged leptons in the standard model, Phys. Rev. Lett. 125 (2020) 241802 [arXiv:2003.08195] [INSPIRE].

    Article  ADS  Google Scholar 

  7. Y. Yamaguchi and N. Yamanaka, Quark level and hadronic contributions to the electric dipole moment of charged leptons in the standard model, Phys. Rev. D 103 (2021) 013001 [arXiv:2006.00281] [INSPIRE].

  8. W. Bernreuther and M. Suzuki, The electric dipole moment of the electron, Rev. Mod. Phys. 63 (1991) 313 [Erratum ibid. 64 (1992) 633] [INSPIRE].

  9. V. Cirigliano, S. Profumo and M.J. Ramsey-Musolf, Baryogenesis, Electric Dipole Moments and Dark Matter in the MSSM, JHEP 07 (2006) 002 [hep-ph/0603246] [INSPIRE].

  10. C. Cesarotti, Q. Lu, Y. Nakai, A. Parikh and M. Reece, Interpreting the Electron EDM Constraint, JHEP 05 (2019) 059 [arXiv:1810.07736] [INSPIRE].

    Article  ADS  Google Scholar 

  11. K. Fuyuto, J. Hisano and E. Senaha, Toward verification of electroweak baryogenesis by electric dipole moments, Phys. Lett. B 755 (2016) 491 [arXiv:1510.04485] [INSPIRE].

    Article  ADS  Google Scholar 

  12. T. Fukuyama, Searching for New Physics beyond the Standard Model in Electric Dipole Moment, Int. J. Mod. Phys. A 27 (2012) 1230015 [arXiv:1201.4252] [INSPIRE].

    Article  ADS  Google Scholar 

  13. T.S. Roussy et al., Experimental constraint on axion-like particle coupling over seven orders of magnitude in mass, arXiv:2006.15787 [INSPIRE].

  14. ACME collaboration, Improved limit on the electric dipole moment of the electron, Nature 562 (2018) 355 [INSPIRE].

  15. B.C. Regan, E.D. Commins, C.J. Schmidt and D. DeMille, New limit on the electron electric dipole moment, Phys. Rev. Lett. 88 (2002) 071805 [INSPIRE].

  16. P.G.H. Sandars, The electric dipole moment of an atom, Phys. Lett. 14 (1965) 194.

    Article  ADS  Google Scholar 

  17. B.J. Wundt, C.T. Munger and U.D. Jentschura, Quantum dynamics in atomic-fountain experiments for measuring the electric dipole moment of the electron with improved sensitivity, Phys. Rev. X 2 (2012) 041009 [arXiv:1211.4057] [INSPIRE].

  18. C.T. Munger, Jr. et al., Development of a Francium Electron Electric Dipole Moment Experiment, APS Division of Nuclear Physics Hawaii Meeting, Waikoloa Hawaii (2014), abstract id. DD.001.

  19. https://www.cns.s.u-tokyo.ac.jp/index.php?Research%2FEDM.

  20. Y. Sakemi, private communication.

  21. K. Harada, Magneto-optical trapping of radioactive francium atoms: toward search for electron electric dipole moment, invited talk at 11th International Workshop on Fundamental Physics Using Atoms (FPUA), Okinawa Japan (2019).

  22. H. Kawamura et al., Thermal surface neutralization of Fr ions with metal foils for magneto-optical trapping of radioisotopes, arXiv:1908.10698 [INSPIRE].

  23. ATLAS collaboration, Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].

  24. CMS collaboration, Observation of a New Boson at a Mass of 125 GeV with the CMS Experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].

  25. ATLAS and CMS collaborations, Combined Measurement of the Higgs Boson Mass in pp Collisions at \( \sqrt{s} \) = 7 and 8 TeV with the ATLAS and CMS Experiments, Phys. Rev. Lett. 114 (2015) 191803 [arXiv:1503.07589] [INSPIRE].

  26. S.M. Barr and A. Zee, Electric Dipole Moment of the Electron and of the Neutron, Phys. Rev. Lett. 65 (1990) 21 [Erratum ibid. 65 (1990) 2920] [INSPIRE].

  27. M. Jung and A. Pich, Electric Dipole Moments in Two-Higgs-Doublet Models, JHEP 04 (2014) 076 [arXiv:1308.6283] [INSPIRE].

    Article  ADS  Google Scholar 

  28. V. Cirigliano, W. Dekens, J. de Vries and E. Mereghetti, Is there room for CP-violation in the top-Higgs sector?, Phys. Rev. D 94 (2016) 016002 [arXiv:1603.03049] [INSPIRE].

  29. J. Brod and D. Skodras, Electric dipole moment constraints on CP-violating light-quark Yukawas, JHEP 01 (2019) 233 [arXiv:1811.05480] [INSPIRE].

    Article  ADS  Google Scholar 

  30. S.-P. He, Higgs boson to γZ decay as a probe of flavor-changing neutral Yukawa couplings, Phys. Rev. D 102 (2020) 075035 [arXiv:2004.12155] [INSPIRE].

  31. N. Chen, T. Li, Z. Teng and Y. Wu, Collapsing domain walls in the two-Higgs-doublet model and deep insights from the EDM, JHEP 10 (2020) 081 [arXiv:2006.06913] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  32. P. Fileviez Perez and A.D. Plascencia, Electric Dipole Moments, New Forces and Dark Matter, arXiv:2008.09116 [INSPIRE].

  33. W. Altmannshofer, S. Gori, N. Hamer and H.H. Patel, Electron EDM in the complex two-Higgs doublet model, Phys. Rev. D 102 (2021) 115042 [arXiv:2009.01258] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  34. S.M. Barr, Measurable T and P odd electron-nucleon interactions from Higgs boson exchange, Phys. Rev. Lett. 68 (1992) 1822 [INSPIRE].

    Article  ADS  Google Scholar 

  35. S.M. Barr, The Magnitude of Higgs exchange CP-violation in two doublet models with large tan Beta, Phys. Rev. D 47 (1993) 2025 [INSPIRE].

    Article  ADS  Google Scholar 

  36. K. Cheung, W.-Y. Keung, Y.-n. Mao and C. Zhang, Constraining CP-violating electron-gluonic operators, JHEP 07 (2019) 074 [arXiv:1904.10808] [INSPIRE].

    Article  ADS  Google Scholar 

  37. K. Yanase, N. Yoshinaga, K. Higashiyama and N. Yamanaka, Electric dipole moment of 199Hg atom from P, CP-odd electron-nucleon interaction, Phys. Rev. D 99 (2019) 075021 [arXiv:1805.00419] [INSPIRE].

  38. N. Yamanaka, B.K. Sahoo, N. Yoshinaga, T. Sato, K. Asahi and B.P. Das, Probing exotic phenomena at the interface of nuclear and particle physics with the electric dipole moments of diamagnetic atoms: A unique window to hadronic and semi-leptonic CP-violation, Eur. Phys. J. A 53 (2017) 54 [arXiv:1703.01570] [INSPIRE].

    Article  ADS  Google Scholar 

  39. C. Kao and R.-M. Xu, Charged Higgs loop contribution to the electric dipole moment of electron, Phys. Lett. B 296 (1992) 435 [INSPIRE].

    Article  ADS  Google Scholar 

  40. D. Bowser-Chao, D. Chang and W.-Y. Keung, Electron electric dipole moment from CP-violation in the charged Higgs sector, Phys. Rev. Lett. 79 (1997) 1988 [hep-ph/9703435] [INSPIRE].

  41. T. Abe, J. Hisano, T. Kitahara and K. Tobioka, Gauge invariant Barr-Zee type contributions to fermionic EDMs in the two-Higgs doublet models, JHEP 01 (2014) 106 [Erratum ibid. 04 (2016) 161] [arXiv:1311.4704] [INSPIRE].

  42. D. Egana-Ugrinovic and S. Thomas, Higgs Boson Contributions to the Electron Electric Dipole Moment, arXiv:1810.08631 [INSPIRE].

  43. R.G. Leigh, S. Paban and R.M. Xu, Electric dipole moment of electron, Nucl. Phys. B 352 (1991) 45 [INSPIRE].

    Article  ADS  Google Scholar 

  44. L. Bian, T. Liu and J. Shu, Cancellations Between Two-Loop Contributions to the Electron Electric Dipole Moment with a CP-Violating Higgs Sector, Phys. Rev. Lett. 115 (2015) 021801 [arXiv:1411.6695] [INSPIRE].

  45. S. Kanemura, M. Kubota and K. Yagyu, Aligned CP-violating Higgs sector canceling the electric dipole moment, JHEP 08 (2020) 026 [arXiv:2004.03943] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  46. J.R. Ellis, J.S. Lee and A. Pilaftsis, Electric Dipole Moments in the MSSM Reloaded, JHEP 10 (2008) 049 [arXiv:0808.1819] [INSPIRE].

    Article  ADS  Google Scholar 

  47. Y. Nakai and M. Reece, Electric Dipole Moments in Natural Supersymmetry, JHEP 08 (2017) 031 [arXiv:1612.08090] [INSPIRE].

    Article  ADS  Google Scholar 

  48. C. Cesarotti, Q. Lu, Y. Nakai, A. Parikh and M. Reece, Interpreting the Electron EDM Constraint, JHEP 05 (2019) 059 [arXiv:1810. 07736] [INSPIRE].

  49. J.R. Ellis, S. Ferrara and D.V. Nanopoulos, CP Violation and Supersymmetry, Phys. Lett. B 114 (1982) 231 [INSPIRE].

    Article  ADS  Google Scholar 

  50. M. Dugan, B. Grinstein and L.J. Hall, CP Violation in the Minimal N = 1 Supergravity Theory, Nucl. Phys. B 255 (1985) 413 [INSPIRE].

    Article  ADS  Google Scholar 

  51. M. Pospelov and A. Ritz, Electric dipole moments as probes of new physics, Annals Phys. 318 (2005) 119 [hep-ph/0504231] [INSPIRE].

  52. D. Chang, W.-Y. Keung and A. Pilaftsis, New two loop contribution to electric dipole moment in supersymmetric theories, Phys. Rev. Lett. 82 (1999) 900 [Erratum ibid. 83 (1999) 3972] [hep-ph/9811202] [INSPIRE].

  53. N. Yamanaka, Two-loop level rainbowlike supersymmetric contribution to the fermion electric dipole moment, Phys. Rev . D 87 (2013) 011701 [arXiv:1211.1808] [INSPIRE].

  54. N. Arkani-Hamed, S. Dimopoulos, G.F. Giudice and A. Romanino, Aspects of split supersymmetry, Nucl. Phys. B 709 (2005) 3 [hep-ph/0409232] [INSPIRE].

  55. N. Yamanaka, T. Sato and T. Kubota, A Reappraisal of two-loop contributions to the fermion electric dipole moments in R-parity violating supersymmetric models, Phys. Rev. D 85 (2012) 117701 [arXiv:1202.0106] [INSPIRE].

    Article  ADS  Google Scholar 

  56. N. Yamanaka, T. Sato and T. Kubota, R-parity violating supersymmetric Barr-Zee type contributions to the fermion electric dipole moment with weak gauge boson exchange, Phys. Rev. D 87 (2013) 115011 [arXiv:1212.6833] [INSPIRE].

    Article  ADS  Google Scholar 

  57. P. Herczeg, P, T violating electron-nucleon interactions in the R-parity violating minimal supersymmetric standard model, Phys. Rev. D 61 (2000) 095010 [hep-ph/9912495] [INSPIRE].

  58. N. Yamanaka, R-parity violating supersymmetric contributions to the P, CP-odd electron-nucleon interaction at the one-loop level, Phys. Rev. D 85 (2012) 115012 [arXiv:1204.6466] [INSPIRE].

    Article  ADS  Google Scholar 

  59. T. Ibrahim and P. Nath, The Neutron and the lepton EDMs in MSSM, large CP-violating phases, and the cancellation mechanism, Phys. Rev. D 58 (1998) 111301 [Erratum ibid. 60 (1999) 099902] [hep-ph/9807501] [INSPIRE].

  60. J. Ellis, J.S. Lee and A. Pilaftsis, A Geometric Approach to CP-violation: Applications to the MCPMFV SUSY Model, JHEP 10 (2010) 049 [arXiv:1006.3087] [INSPIRE].

    Article  ADS  Google Scholar 

  61. N. Yamanaka, T. Sato and T. Kubota, Linear programming analysis of the R-parity violation within EDM-constraints, JHEP 12 (2014) 110 [arXiv:1406.3713] [INSPIRE].

    Article  ADS  Google Scholar 

  62. C.Q. Geng, Leptonic CP-violation in leptoquark models, Z. Phys. C 48 (1990) 279 [INSPIRE].

    Article  Google Scholar 

  63. X.-G. He, B.H.J. McKellar and S. Pakvasa, CP violating electron-nucleon interactions in multi-Higgs doublet and leptoquark models, Phys. Lett. B 283 (1992) 348 [INSPIRE].

    Article  ADS  Google Scholar 

  64. W. Dekens, J. de Vries, M. Jung and K.K. Vos, The phenomenology of electric dipole moments in models of scalar leptoquarks, JHEP 01 (2019) 069 [arXiv:1809. 09114] [INSPIRE].

  65. P. Herczeg, CP violating electron-nucleon interactions from leptoquark exchange, Phys. Rev. D 68 (2003) 116004 [Erratum ibid. 69 (2004) 039901] [INSPIRE].

  66. K. Fuyuto, M. Ramsey-Musolf and T. Shen, Electric Dipole Moments from CP-Violating Scalar Leptoquark Interactions, Phys. Lett. B 788 (2019) 52 [arXiv:1804.01137] [INSPIRE].

    Article  ADS  Google Scholar 

  67. W. Altmannshofer, S. Gori, H.H. Patel, S. Profumo and D. Tuckler, Electric dipole moments in a leptoquark scenario for the B-physics anomalies, JHEP 05 (2020) 069 [arXiv:2002.01400] [INSPIRE].

    Article  ADS  Google Scholar 

  68. xQCD collaboration, πN and strangeness sigma terms at the physical point with chiral fermions, Phys. Rev. D 94 (2016) 054503 [arXiv:1511.09089] [INSPIRE].

  69. S. Durr et al., Lattice computation of the nucleon scalar quark contents at the physical point, Phys. Rev. Lett. 116 (2016) 172001 [arXiv:1510.08013] [INSPIRE].

  70. RQCD collaboration, Direct determinations of the nucleon and pion σ terms at nearly physical quark masses, Phys. Rev. D 93 (2016) 094504 [arXiv:1603.00827] [INSPIRE].

  71. JLQCD collaboration, Nucleon charges with dynamical overlap fermions, Phys. Rev. D 98 (2018) 054516 [arXiv:1805.10507] [INSPIRE].

  72. C. Alexandrou et al., Nucleon axial, tensor, and scalar charges and σ-terms in lattice QCD, Phys. Rev. D 102 (2020) 054517 [arXiv:1909.00485] [INSPIRE].

  73. S. Borsanyi et al., Ab-initio calculation of the proton and the neutron’s scalar couplings for new physics searches, arXiv:2007.03319 [INSPIRE].

  74. J.M. Alarcon, J. Martin Camalich and J.A. Oller, The chiral representation of the πN scattering amplitude and the pion-nucleon sigma term, Phys. Rev. D 85 (2012) 051503 [arXiv:1110.3797] [INSPIRE].

  75. M. Hoferichter, J. Ruiz de Elvira, B. Kubis and U.-G. Meißner, High-Precision Determination of the Pion-Nucleon σ Term from Roy-Steiner Equations, Phys. Rev. Lett. 115 (2015) 092301 [arXiv:1506.04142] [INSPIRE].

  76. D.-L. Yao et al., Pion-nucleon scattering in covariant baryon chiral perturbation theory with explicit Delta resonances, JHEP 05 (2016) 038 [arXiv:1603.03638] [INSPIRE].

  77. J. Ruiz de Elvira, M. Hoferichter, B. Kubis and U.-G. Meißner, Extracting the σ-term from low-energy pion-nucleon scattering, J. Phys. G 45 (2018) 024001 [arXiv:1706.01465] [INSPIRE].

  78. E. Friedman and A. Gal, The pion-nucleon σ term from pionic atoms, Phys. Lett. B 792 (2019) 340 [arXiv:1901.03130] [INSPIRE].

    Article  ADS  Google Scholar 

  79. J.-H. Huang, T.-T. Sun and H. Chen, Evaluation of pion-nucleon sigma term in Dyson-Schwinger equation approach of QCD, Phys. Rev. D 101 (2020) 054007 [arXiv:1910.08298] [INSPIRE].

  80. J.P. Ma and G.P. Zhang, On the singular behavior of the chirality-odd twist-3 parton distribution e(x), Phys. Lett. B 811 (2020) 135947.

    Article  MathSciNet  Google Scholar 

  81. M. Pospelov and A. Ritz, CKM benchmarks for electron electric dipole moment experiments, Phys. Rev. D 89 (2014) 056006 [arXiv:1311.5537] [INSPIRE].

  82. N. Yamanaka and E. Hiyama, Standard model contribution to the electric dipole moment of the deuteron,3H, and 3He nuclei, JHEP 02 (2016) 067 [arXiv:1512.03013] [INSPIRE].

    Article  ADS  Google Scholar 

  83. H.S. Nataraj, B.K. Sahoo, B.P. Das and D. Mukherjee, Intrinsic Electric Dipole Moments of Paramagnetic Atoms: Rubidium and Cesium, Phys. Rev. Lett. 101 (2008) 033002.

  84. D. Mukherjee, B.K. Sahoo, H.S. Nataraj and B.P. Das, Relativistic Coupled Cluster (RCC) Computation of the Electric Dipole Moment Enhancement Factor of Francium Due to the Violation of Time Reversal Symmetry, J. Phys. Chem. A 113 (2009) 12549.

    Article  Google Scholar 

  85. A. Shee, L. Visscher and T. Saue, Analytic one-electron properties at the 4-component relativistic coupled cluster level with inclusion of spin-orbit coupling, J. Chem. Phys. 145 (2016) 184107.

    Article  ADS  Google Scholar 

  86. T.M.R. Byrnes, V.A. Dzuba, V.V. Flambaum and D.W. Murray, Enhancement factor for the electron electric dipole moment in francium and gold atoms, Phys. Rev. A 59 (1999) 3082.

    Article  ADS  Google Scholar 

  87. P.G.H. Sandars, Enhancement factor for the electric dipole moment of the valence electron in an alkali atom, Phys. Lett. 22 (1966) 290.

    Article  ADS  Google Scholar 

  88. L.V. Skripnikov, D.E. Maison and N.S. Mosyagin, Scalar-pseudoscalar interaction in the francium atom, Phys. Rev. A 95 (2017) 022507 [arXiv:1611.09103] [INSPIRE].

  89. N. Shitara, B.K. Sahoo, T. Watanabe and B.P. Das, Relativistic many-body analysis of the electric dipole moment enhancement factor of 210Fr and associated properties, arXiv:1912.02981 [INSPIRE].

  90. W.B. Cairncross et al., Precision Measurement of the Electron’s Electric Dipole Moment Using Trapped Molecular Ions, Phys. Rev. Lett. 119 (2017) 153001 [arXiv:1704.07928] [INSPIRE].

  91. G.S. Bali et al., Nucleon isovector couplings from Nf = 2 lattice QCD, Phys. Rev. D 91 (2015) 054501 [arXiv:1412.7336] [INSPIRE].

  92. Y.-B. Yang, A. Alexandru, T. Draper, M. Gong and K.-F. Liu, Stochastic method with low mode substitution for nucleon isovector matrix elements, Phys. Rev. D 93 (2016) 034503 [arXiv:1509.04616] [INSPIRE].

  93. J. Dragos et al., Nucleon matrix elements using the variational method in lattice QCD, Phys. Rev. D 94 (2016) 074505 [arXiv:1606.03195] [INSPIRE].

  94. B. Yoon et al., Isovector charges of the nucleon from 2+1-flavor QCD with clover fermions, Phys. Rev. D 95 (2017) 074508 [arXiv:1611.07452] [INSPIRE].

  95. C. Egerer, D. Richards and F. Winter, Controlling excited-state contributions with distillation in lattice QCD calculations of nucleon isovector charges \( {g}_S^{u-d},{g}_A^{u-d},{g}_T^{u-d} \), Phys. Rev. D 99 (2019) 034506 [arXiv:1810.09991] [INSPIRE].

  96. N. Hasan et al., Nucleon axial, scalar, and tensor charges using lattice QCD at the physical pion mass, Phys. Rev . D 99 (2019) 114505 [arXiv:1903.06487] [INSPIRE].

  97. T. Harris et al., Nucleon isovector charges and twist-2 matrix elements with Nf = 2 + 1 dynamical Wilson quarks, Phys. Rev. D 100 (2019) 034513 [arXiv:1905.01291] [INSPIRE].

Download references

Author information

Authors and Affiliations

  1. Department of Physics, School of Science, Tokyo Institute of Technology, Ookayama, Meguro-ku, Tokyo, 152-8550, Japan

    Nanako Shitara & Bhanu Pratap Das

  2. Amherst Center for Fundamental Interactions, Department of Physics, University of Massachusetts, Amherst, MA, 01003, USA

    Nodoka Yamanaka

  3. Department of Physics, Kennesaw State University, Kennesaw, GA, 30144, USA

    Nodoka Yamanaka

  4. Nishina Center for Accelerator-Based Science, RIKEN, Wako, 351-0198, Japan

    Nodoka Yamanaka

  5. Atomic, Molecular and Optical Physics Division, Physical Research Laboratory, Navrangpura, Ahmedabad, 380009, India

    Bijaya Kumar Sahoo

  6. Global Scientific Information and Computing Center, Tokyo Institute of Technology, Ookayama, Meguro-ku, Tokyo, 152-8550, Japan

    Toshio Watanabe

  7. Department of Physics, University of Colorado, Boulder, CO, 80309, USA

    Nanako Shitara

  8. Centre for Quantum Engineering Research and Engineering, TCG CREST, Sector V, Salt Lake, Kolkata, 700091, India

    Bhanu Pratap Das

Authors
  1. Nanako Shitara
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Nodoka Yamanaka
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Bijaya Kumar Sahoo
    View author publications

    You can also search for this author in PubMed Google Scholar

  4. Toshio Watanabe
    View author publications

    You can also search for this author in PubMed Google Scholar

  5. Bhanu Pratap Das
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Nodoka Yamanaka.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

ArXiv ePrint: 2011.02529

Rights and permissions

Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shitara, N., Yamanaka, N., Sahoo, B.K. et al. CP violating effects in 210Fr and prospects for new physics beyond the Standard Model. J. High Energ. Phys. 2021, 124 (2021). https://doi.org/10.1007/JHEP02(2021)124

Download citation

  • Received: 09 November 2020

  • Revised: 17 December 2020

  • Accepted: 04 January 2021

  • Published: 15 February 2021

  • DOI: https://doi.org/10.1007/JHEP02(2021)124

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Beyond Standard Model
  • CP violation
  • Higgs Physics
  • Supersymmetric Standard Model
Download PDF

Working on a manuscript?

Avoid the common mistakes

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Publish your research
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our imprints

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support

Not affiliated

Springer Nature

© 2023 Springer Nature