Skip to main content

Flavor-dependent radiative corrections in coherent elastic neutrino-nucleus scattering

A preprint version of the article is available at arXiv.


We calculate coherent elastic neutrino-nucleus scattering cross sections on spin-0 nuclei (e.g. 40Ar and 28Si) at energies below 100 MeV within the Standard Model and account for all effects of permille size. We provide a complete error budget including uncertainties at nuclear, nucleon, hadronic, and quark levels separately as well as perturbative error. Our calculation starts from the four-fermion effective field theory to explicitly separate heavy-particle mediated corrections (which are absorbed by Wilson coefficients) from light-particle contributions. Electrons and muons running in loops introduce a non- trivial dependence on the momentum transfer due to their relatively light masses. These same loops, and those mediated by tau leptons, break the flavor universality because of mass-dependent electromagnetic radiative corrections. Nuclear physics uncertainties significantly cancel in flavor asymmetries resulting in subpercent relative errors. We find that for low neutrino energies, the cross section can be predicted with a relative precision that is competitive with neutrino-electron scattering. We highlight potentially useful applications of such a precise cross section prediction ranging from precision tests of the Standard Model, to searches for new physics and to the monitoring of nuclear reactors.


  1. L. Stodolsky, Application of Nuclear Coherence Properties to Elementary-Particle Reactions, Phys. Rev. 144 (1966) 1145 [INSPIRE].

    ADS  Google Scholar 

  2. D.Z. Freedman, Coherent Neutrino Nucleus Scattering as a Probe of the Weak Neutral Current, Phys. Rev. D 9 (1974) 1389 [INSPIRE].

    ADS  Google Scholar 

  3. V.B. Kopeliovich and L.L. Frankfurt, Isotopic and chiral structure of neutral current, JETP Lett. 19 (1974) 145 [INSPIRE].

    ADS  Google Scholar 

  4. COHERENT collaboration, Observation of Coherent Elastic Neutrino-Nucleus Scattering, Science 357 (2017) 1123 [arXiv:1708.01294] [INSPIRE].

  5. vIOLETA collaboration, The violeta collaboration website,

  6. D. Rodrigues, G.F. Moroni, C. Bonifazi and J.C. D’Olivo, vIOLETA: Neutrino interaction observation with a low energy threshold array, in The XXIX International Conference on Neutrino Physics and Astrophysics, 22 June–2 July 2020 [ ].

  7. E. Pozzi, I.P. Sidelnik, L. Galeta and P. Curotto, Short baseline neutrino program in argentina, in The XXIX International Conference on Neutrino Physics and Astrophysics, 22 June–2 July 2020 [ ].

  8. I.J. Martinez-Soler, P. Machado, Y.F. Perez-Gonzalez and S. Rosauro-Alcaraz, A first study of the physics potential of a reactor neutrino experiment with skipper-ccds, in The XXIX International Conference on Neutrino Physics and Astrophysics, 22 June–2 July 2020 [ ].

  9. L.J. Flores, N. Nath and E. Peinado, Non-standard neutrino interactions in U(1)′ model after COHERENT data, JHEP 06 (2020) 045 [arXiv:2002.12342] [INSPIRE].

    ADS  Google Scholar 

  10. COHERENT collaboration, The CENNS-10 Liquid Argon Detector to measure CEvNS at the Spallation Neutron Source, 2018 JINST 13 C04005 [arXiv:1801.00086] [INSPIRE].

  11. COHERENT collaboration, Development of a 83mKr source for the calibration of the CENNS-10 Liquid Argon Detector, arXiv:2010.11258 [INSPIRE].

  12. COHERENT collaboration, Development of Liquid Noble Gas Scintillation Detectors for Studying Coherent Elastic Neutrino-Nucleus Scattering, Instrum. Exp. Tech. 63 (2020) 641 [INSPIRE].

  13. E. Dunton, Searching for sterile neutrinos at coherent captain mills, in The Magnificent CEνNS workshop, 9–11 November 2019 [].

  14. MicroBooNE, LAr1-ND and ICARUS-WA104 collaborations, A Proposal for a Three Detector Short-Baseline Neutrino Oscillation Program in the Fermilab Booster Neutrino Beam, arXiv:1503.01520 [INSPIRE].

  15. P.A. Machado, O. Palamara and D.W. Schmitz, The Short-Baseline Neutrino Program at Fermilab, Ann. Rev. Nucl. Part. Sci. 69 (2019) 363 [arXiv:1903.04608] [INSPIRE].

    ADS  Google Scholar 

  16. MicroBooNE collaboration, First Measurement of Inclusive Muon Neutrino Charged Current Differential Cross Sections on Argon at Eν 0.8 GeV with the MicroBooNE Detector, Phys. Rev. Lett. 123 (2019) 131801 [arXiv:1905.09694] [INSPIRE].

  17. SBND collaboration, SBND: Status of the Fermilab Short-Baseline Near Detector, J. Phys. Conf. Ser. 888 (2017) 012148 [INSPIRE].

  18. ICARUS collaboration, The ICARUS Experiment, Universe 5 (2019) 49 [INSPIRE].

  19. CONNIE collaboration, Exploring low-energy neutrino physics with the Coherent Neutrino Nucleus Interaction Experiment, Phys. Rev. D 100 (2019) 092005 [arXiv:1906.02200] [INSPIRE].

  20. G. Fernandez-Moroni, P.A.N. Machado, I. Martinez-Soler, Y.F. Perez-Gonzalez, D. Rodrigues and S. Rosauro-Alcaraz, The physics potential of a reactor neutrino experiment with Skipper CCDs: Measuring the weak mixing angle, arXiv:2009.10741 [INSPIRE].

  21. A. Galindo-Uribarri, O.G. Miranda and G.S. Garcia, A novel approach for the study of CEvNS, arXiv:2011.10230 [INSPIRE].

  22. B. Cabrera, L.M. Krauss and F. Wilczek, Bolometric Detection of Neutrinos, Phys. Rev. Lett. 55 (1985) 25 [INSPIRE].

    ADS  Google Scholar 

  23. A.K. Drukier, K. Freese and D.N. Spergel, Detecting Cold Dark Matter Candidates, Phys. Rev. D 33 (1986) 3495 [INSPIRE].

    ADS  Google Scholar 

  24. J. Monroe and P. Fisher, Neutrino Backgrounds to Dark Matter Searches, Phys. Rev. D 76 (2007) 033007 [arXiv:0706.3019] [INSPIRE].

  25. J.D. Vergados and H. Ejiri, Can Solar Neutrinos be a Serious Background in Direct Dark Matter Searches?, Nucl. Phys. B 804 (2008) 144 [arXiv:0805.2583] [INSPIRE].

    ADS  Google Scholar 

  26. L.E. Strigari, Neutrino Coherent Scattering Rates at Direct Dark Matter Detectors, New J. Phys. 11 (2009) 105011 [arXiv:0903.3630] [INSPIRE].

    ADS  Google Scholar 

  27. A. Gutlein et al., Solar and atmospheric neutrinos: Background sources for the direct dark matter search, Astropart. Phys. 34 (2010) 90 [arXiv:1003.5530] [INSPIRE].

  28. R. Harnik, J. Kopp and P.A.N. Machado, Exploring nu Signals in Dark Matter Detectors, JCAP 07 (2012) 026 [arXiv:1202.6073] [INSPIRE].

    ADS  Google Scholar 

  29. J. Billard, L. Strigari and E. Figueroa-Feliciano, Implication of neutrino backgrounds on the reach of next generation dark matter direct detection experiments, Phys. Rev. D 89 (2014) 023524 [arXiv:1307.5458] [INSPIRE].

  30. C.A.J. O’Hare, Dark matter astrophysical uncertainties and the neutrino floor, Phys. Rev. D 94 (2016) 063527 [arXiv:1604.03858] [INSPIRE].

  31. D.G. Cerdeño, M. Fairbairn, T. Jubb, P.A.N. Machado, A.C. Vincent and C. Bœhm, Physics from solar neutrinos in dark matter direct detection experiments, JHEP 05 (2016) 118 [Erratum ibid. 09 (2016) 048] [arXiv:1604.01025] [INSPIRE].

  32. E. Bertuzzo, F.F. Deppisch, S. Kulkarni, Y.F. Perez Gonzalez and R. Zukanovich Funchal, Dark Matter and Exotic Neutrino Interactions in Direct Detection Searches, JHEP 04 (2017) 073 [arXiv:1701.07443] [INSPIRE].

    ADS  Google Scholar 

  33. C. Bœhm, D.G. Cerdeño, P.A.N. Machado, A. Olivares-Del Campo, E. Perdomo and E. Reid, How high is the neutrino floor?, JCAP 01 (2019) 043 [arXiv:1809.06385] [INSPIRE].

    ADS  Google Scholar 

  34. G.B. Gelmini, V. Takhistov and S.J. Witte, Casting a Wide Signal Net with Future Direct Dark Matter Detection Experiments, JCAP 07 (2018) 009 [Erratum ibid. 02 (2019) E02] [arXiv:1804.01638] [INSPIRE].

  35. D.K. Papoulias, R. Sahu, T.S. Kosmas, V.K.B. Kota and B. Nayak, Novel neutrino-floor and dark matter searches with deformed shell model calculations, Adv. High Energy Phys. 2018 (2018) 6031362 [arXiv:1804.11319] [INSPIRE].

    Google Scholar 

  36. P.S. Amanik, G.M. Fuller and B. Grinstein, Flavor changing supersymmetry interactions in a supernova, Astropart. Phys. 24 (2005) 160 [hep-ph/0407130] [INSPIRE].

  37. J. Barranco, O.G. Miranda and T.I. Rashba, Probing new physics with coherent neutrino scattering off nuclei, JHEP 12 (2005) 021 [hep-ph/0508299] [INSPIRE].

  38. K. Scholberg, Prospects for measuring coherent neutrino-nucleus elastic scattering at a stopped-pion neutrino source, Phys. Rev. D 73 (2006) 033005 [hep-ex/0511042] [INSPIRE].

  39. J. Barranco, O.G. Miranda and T.I. Rashba, Low energy neutrino experiments sensitivity to physics beyond the Standard Model, Phys. Rev. D 76 (2007) 073008 [hep-ph/0702175] [INSPIRE].

  40. J. Barranco, O.G. Miranda and T.I. Rashba, Probing nonstandard interactions with reactor neutrinos, Nucl. Phys. B Proc. Suppl. 188 (2009) 214 [arXiv:0810.5361] [INSPIRE].

    ADS  Google Scholar 

  41. J. Barranco, A. Bolanos, O.G. Miranda, C.A. Moura and T.I. Rashba, Unparticle physics and neutrino phenomenology, Phys. Rev. D 79 (2009) 073011 [arXiv:0901.2099] [INSPIRE].

  42. J.A. Formaggio, E. Figueroa-Feliciano and A.J. Anderson, Sterile Neutrinos, Coherent Scattering and Oscillometry Measurements with Low-temperature Bolometers, Phys. Rev. D 85 (2012) 013009 [arXiv:1107.3512] [INSPIRE].

  43. C. Espinoza, R. Lazauskas and C. Volpe, Search for New Physics with Neutrinos at Radioactive Ion Beam Facilities, Phys. Rev. D 86 (2012) 113016 [arXiv:1203.0790] [INSPIRE].

    ADS  Google Scholar 

  44. J. Billard, L.E. Strigari and E. Figueroa-Feliciano, Solar neutrino physics with low-threshold dark matter detectors, Phys. Rev. D 91 (2015) 095023 [arXiv:1409.0050] [INSPIRE].

  45. B. Dutta, Y. Gao, R. Mahapatra, N. Mirabolfathi, L.E. Strigari and J.W. Walker, Sensitivity to oscillation with a sterile fourth generation neutrino from ultra-low threshold neutrino-nucleus coherent scattering, Phys. Rev. D 94 (2016) 093002 [arXiv:1511.02834] [INSPIRE].

  46. M. Lindner, W. Rodejohann and X.-J. Xu, Coherent Neutrino-Nucleus Scattering and new Neutrino Interactions, JHEP 03 (2017) 097 [arXiv:1612.04150] [INSPIRE].

    ADS  Google Scholar 

  47. P. Coloma, M.C. Gonzalez-Garcia, M. Maltoni and T. Schwetz, COHERENT Enlightenment of the Neutrino Dark Side, Phys. Rev. D 96 (2017) 115007 [arXiv:1708.02899] [INSPIRE].

    ADS  Google Scholar 

  48. D.K. Papoulias and T.S. Kosmas, COHERENT constraints to conventional and exotic neutrino physics, Phys. Rev. D 97 (2018) 033003 [arXiv:1711.09773] [INSPIRE].

  49. J. Liao and D. Marfatia, COHERENT constraints on nonstandard neutrino interactions, Phys. Lett. B 775 (2017) 54 [arXiv:1708.04255] [INSPIRE].

    ADS  Google Scholar 

  50. D. Aristizabal Sierra, N. Rojas and M.H.G. Tytgat, Neutrino non-standard interactions and dark matter searches with multi-ton scale detectors, JHEP 03 (2018) 197 [arXiv:1712.09667] [INSPIRE].

    ADS  Google Scholar 

  51. Y. Farzan and M. Tortola, Neutrino oscillations and Non-Standard Interactions, Front. in Phys. 6 (2018) 10 [arXiv:1710.09360] [INSPIRE].

    ADS  Google Scholar 

  52. B.C. Cañas, E.A. Garcés, O.G. Miranda and A. Parada, The reactor antineutrino anomaly and low energy threshold neutrino experiments, Phys. Lett. B 776 (2018) 451 [arXiv:1708.09518] [INSPIRE].

    ADS  Google Scholar 

  53. J. Billard, J. Johnston and B.J. Kavanagh, Prospects for exploring New Physics in Coherent Elastic Neutrino-Nucleus Scattering, JCAP 11 (2018) 016 [arXiv:1805.01798] [INSPIRE].

    ADS  Google Scholar 

  54. W. Altmannshofer, M. Tammaro and J. Zupan, Non-standard neutrino interactions and low energy experiments, JHEP 09 (2019) 083 [arXiv:1812.02778] [INSPIRE].

    ADS  Google Scholar 

  55. D. Aristizabal Sierra, V. De Romeri and N. Rojas, COHERENT analysis of neutrino generalized interactions, Phys. Rev. D 98 (2018) 075018 [arXiv:1806.07424] [INSPIRE].

  56. V. Brdar, W. Rodejohann and X.-J. Xu, Producing a new Fermion in Coherent Elastic Neutrino-Nucleus Scattering: from Neutrino Mass to Dark Matter, JHEP 12 (2018) 024 [arXiv:1810.03626] [INSPIRE].

    ADS  Google Scholar 

  57. M. Abdullah, J.B. Dent, B. Dutta, G.L. Kane, S. Liao and L.E. Strigari, Coherent elastic neutrino nucleus scattering as a probe of a Z’ through kinetic and mass mixing effects, Phys. Rev. D 98 (2018) 015005 [arXiv:1803.01224] [INSPIRE].

  58. Y. Farzan, M. Lindner, W. Rodejohann and X.-J. Xu, Probing neutrino coupling to a light scalar with coherent neutrino scattering, JHEP 05 (2018) 066 [arXiv:1802.05171] [INSPIRE].

    ADS  Google Scholar 

  59. P.B. Denton, Y. Farzan and I.M. Shoemaker, Testing large non-standard neutrino interactions with arbitrary mediator mass after COHERENT data, JHEP 07 (2018) 037 [arXiv:1804.03660] [INSPIRE].

    ADS  Google Scholar 

  60. M.C. Gonzalez-Garcia, M. Maltoni, Y.F. Perez-Gonzalez and R. Zukanovich Funchal, Neutrino Discovery Limit of Dark Matter Direct Detection Experiments in the Presence of Non-Standard Interactions, JHEP 07 (2018) 019 [arXiv:1803.03650] [INSPIRE].

    ADS  Google Scholar 

  61. I. Esteban, M.C. Gonzalez-Garcia, M. Maltoni, I. Martinez-Soler and J. Salvado, Updated constraints on non-standard interactions from global analysis of oscillation data, JHEP 08 (2018) 180 [Addendum ibid. 12 (2020) 152] [arXiv:1805.04530] [INSPIRE].

  62. D. Aristizabal Sierra, J. Liao and D. Marfatia, Impact of form factor uncertainties on interpretations of coherent elastic neutrino-nucleus scattering data, JHEP 06 (2019) 141 [arXiv:1902.07398] [INSPIRE].

    ADS  Google Scholar 

  63. O.G. Miranda, G. Sanchez Garcia and O. Sanders, Coherent elastic neutrino-nucleus scattering as a precision test for the Standard Model and beyond: the COHERENT proposal case, Adv. High Energy Phys. 2019 (2019) 3902819 [arXiv:1902.09036] [INSPIRE].

    Google Scholar 

  64. I. Alikhanov and E.A. Paschos, A chiral gauge-invariant model for Majorana neutrinos, arXiv:1902.09950 [INSPIRE].

  65. N.F. Bell, J.B. Dent, J.L. Newstead, S. Sabharwal and T.J. Weiler, Migdal effect and photon bremsstrahlung in effective field theories of dark matter direct detection and coherent elastic neutrino-nucleus scattering, Phys. Rev. D 101 (2020) 015012 [arXiv:1905.00046] [INSPIRE].

  66. I. Bischer and W. Rodejohann, General neutrino interactions from an effective field theory perspective, Nucl. Phys. B 947 (2019) 114746 [arXiv:1905.08699] [INSPIRE].

    MathSciNet  MATH  Google Scholar 

  67. D. Aristizabal Sierra, V. De Romeri and N. Rojas, CP violating effects in coherent elastic neutrino-nucleus scattering processes, JHEP 09 (2019) 069 [arXiv:1906.01156] [INSPIRE].

  68. P.S. Bhupal Dev et al., Neutrino Non-Standard Interactions: A Status Report, SciPost Phys. Proc. 2 (2019) [INSPIRE].

  69. A.N. Khan and W. Rodejohann, New physics from COHERENT data with an improved quenching factor, Phys. Rev. D 100 (2019) 113003 [arXiv:1907.12444] [INSPIRE].

    ADS  Google Scholar 

  70. M. Cadeddu, F. Dordei, C. Giunti, Y.F. Li and Y.Y. Zhang, Neutrino, electroweak, and nuclear physics from COHERENT elastic neutrino-nucleus scattering with refined quenching factor, Phys. Rev. D 101 (2020) 033004 [arXiv:1908.06045] [INSPIRE].

  71. C. Giunti, General COHERENT constraints on neutrino nonstandard interactions, Phys. Rev. D 101 (2020) 035039 [arXiv:1909.00466] [INSPIRE].

  72. COHERENT collaboration, First Constraint on Coherent Elastic Neutrino-Nucleus Scattering in Argon, Phys. Rev. D 100 (2019) 115020 [arXiv:1909.05913] [INSPIRE].

  73. T. Han, J. Liao, H. Liu and D. Marfatia, Nonstandard neutrino interactions at COHERENT, DUNE, T2HK and LHC, JHEP 11 (2019) 028 [arXiv:1910.03272] [INSPIRE].

    ADS  Google Scholar 

  74. CONNIE collaboration, Search for light mediators in the low-energy data of the CONNIE reactor neutrino experiment, JHEP 04 (2020) 054 [arXiv:1910.04951] [INSPIRE].

  75. D. Baxter et al., Coherent Elastic Neutrino-Nucleus Scattering at the European Spallation Source, JHEP 02 (2020) 123 [arXiv:1911.00762] [INSPIRE].

  76. D.K. Papoulias, T.S. Kosmas and Y. Kuno, Recent probes of standard and non-standard neutrino physics with nuclei, Front. in Phys. 7 (2019) 191 [arXiv:1911.00916] [INSPIRE].

    ADS  Google Scholar 

  77. P. Coloma, I. Esteban, M.C. Gonzalez-Garcia and M. Maltoni, Improved global fit to Non-Standard neutrino Interactions using COHERENT energy and timing data, JHEP 02 (2020) 023 [Addendum ibid. 12 (2020) 071] [arXiv:1911.09109] [INSPIRE].

  78. K.S. Babu, P.S.B. Dev, S. Jana and A. Thapa, Non-Standard Interactions in Radiative Neutrino Mass Models, JHEP 03 (2020) 006 [arXiv:1907.09498] [INSPIRE].

    ADS  Google Scholar 

  79. B.C. Canas, E.A. Garces, O.G. Miranda, A. Parada and G. Sanchez Garcia, Interplay between nonstandard and nuclear constraints in coherent elastic neutrino-nucleus scattering experiments, Phys. Rev. D 101 (2020) 035012 [arXiv:1911.09831] [INSPIRE].

  80. J.B. Dent et al., New Directions for Axion Searches via Scattering at Reactor Neutrino Experiments, Phys. Rev. Lett. 124 (2020) 211804 [arXiv:1912.05733] [INSPIRE].

  81. B. Dutta, S. Liao, S. Sinha and L.E. Strigari, Searching for Beyond the Standard Model Physics with COHERENT Energy and Timing Data, Phys. Rev. Lett. 123 (2019) 061801 [arXiv:1903.10666] [INSPIRE].

  82. O.G. Miranda, D.K. Papoulias, M. Tórtola and J.W.F. Valle, Probing neutrino transition magnetic moments with coherent elastic neutrino-nucleus scattering, JHEP 07 (2019) 103 [arXiv:1905.03750] [INSPIRE].

    ADS  Google Scholar 

  83. I. Esteban, Leptonic CP-violation and its Origin, Ph.D. Thesis, Universitat de Barcelona (2020) [arXiv:2010.00440] [INSPIRE].

  84. P.B. Denton and J. Gehrlein, A Statistical Analysis of the COHERENT Data and Applications to New Physics, arXiv:2008.06062 [INSPIRE].

  85. B. Dutta, R.F. Lang, S. Liao, S. Sinha, L. Strigari and A. Thompson, A global analysis strategy to resolve neutrino NSI degeneracies with scattering and oscillation data, JHEP 09 (2020) 106 [arXiv:2002.03066] [INSPIRE].

    ADS  Google Scholar 

  86. W.-F. Chang and J. Liao, Constraints on light singlet fermion interactions from coherent elastic neutrino-nucleus scattering, Phys. Rev. D 102 (2020) 075004 [arXiv:2002.10275] [INSPIRE].

  87. COHERENT collaboration, First Detection of Coherent Elastic Neutrino-Nucleus Scattering on Argon, Phys. Rev. Lett. 126 (2021) 012002 [arXiv:2003.10630] [INSPIRE].

  88. M. Abdullah, D. Aristizabal Sierra, B. Dutta and L.E. Strigari, Coherent Elastic Neutrino-Nucleus Scattering with directional detectors, Phys. Rev. D 102 (2020) 015009 [arXiv:2003.11510] [INSPIRE].

  89. T. Li, X.-D. Ma and M.A. Schmidt, General neutrino interactions with sterile neutrinos in light of coherent neutrino-nucleus scattering and meson invisible decays, JHEP 07 (2020) 152 [arXiv:2005.01543] [INSPIRE].

    ADS  Google Scholar 

  90. D.W.P.d. Amaral, D.G. Cerdeno, P. Foldenauer and E. Reid, Solar neutrino probes of the muon anomalous magnetic moment in the gauged \( \mathrm{U}{(1)}_{L_{\mu }-{L}_{\tau }} \), JHEP 12 (2020) 155 [arXiv:2006.11225] [INSPIRE].

  91. W. Abdallah, R. Gandhi and S. Roy, Understanding the MiniBooNE and the muon and electron g − 2 anomalies with a light Zand a second Higgs doublet, JHEP 12 (2020) 188 [arXiv:2006.01948] [INSPIRE].

    ADS  Google Scholar 

  92. S. Sadhukhan and M.P. Singh, Neutrino floor in leptophilic U(1) models: Modification in \( \mathrm{U}{(1)}_{L_{\mu }-{L}_{\tau }} \), Phys. Rev. D 103 (2021) 015015 [arXiv:2006.05981] [INSPIRE].

  93. A.M. Suliga and I. Tamborra, Astrophysical constraints on non-standard coherent neutrino-nucleus scattering, arXiv:2010.14545 [INSPIRE].

  94. G. Sinev, Constraining Non-Standard Neutrino Interactions and Estimating Future Neutrino-Magnetic-Moment Sensitivity With COHERENT, Ph.D. Thesis, Duke University (2020) [INSPIRE].

  95. W. Skiba and Q. Xia, Electroweak Constraints from the COHERENT Experiment, arXiv:2007.15688 [INSPIRE].

  96. B. Dutta, S. Ghosh and J. Kumar, Opportunities for probing U(1)T3R with light mediators, Phys. Rev. D 102 (2020) 075041 [arXiv:2007.16191] [INSPIRE].

  97. P.B. Denton, J. Gehrlein and R. Pestes, CP-Violating Neutrino Non-Standard Interactions in Long-Baseline-Accelerator Data, arXiv:2008.01110 [INSPIRE].

  98. K. Ding, D. Chernyak and J. Liu, Light yield of cold undoped CsI crystal down to 13 keV and the application of such crystals in neutrino detection, Eur. Phys. J. C 80 (2020) 1146 [arXiv:2008.00939] [INSPIRE].

    ADS  Google Scholar 

  99. M. Cadeddu et al., Constraints on light vector mediators through coherent elastic neutrino nucleus scattering data from COHERENT, JHEP 01 (2021) 116 [arXiv:2008.05022] [INSPIRE].

  100. O.G. Miranda, D.K. Papoulias, O. Sanders, M. Tórtola and J.W.F. Valle, Future CEvNS experiments as probes of lepton unitarity and light-sterile neutrinos, Phys. Rev. D 102 (2020) 113014 [arXiv:2008.02759] [INSPIRE].

    ADS  Google Scholar 

  101. P. Barbeau et al., Far-Future COHERENT physics program at the SNS, Snowmass 2021 LoI (2020).

  102. E. Aprile et al., Search for coherent elastic scattering of solar 8B neutrinos in the XENON1T dark matter experiment, arXiv:2012.02846 [INSPIRE].

  103. Y.-T. Wei et al., Prospects of detecting the reactor \( {\overline{\nu}}_e \)-Ar coherent elastic scattering with a low threshold dual-phase argon time projection chamber at Taishan, arXiv:2012.00966 [INSPIRE].

  104. B.C. Cañas, E.A. Garcés, O.G. Miranda and A. Parada, Future perspectives for a weak mixing angle measurement in coherent elastic neutrino nucleus scattering experiments, Phys. Lett. B 784 (2018) 159 [arXiv:1806.01310] [INSPIRE].

    ADS  Google Scholar 

  105. X.-R. Huang and L.-W. Chen, Neutron Skin in CsI and Low-Energy Effective Weak Mixing Angle from COHERENT Data, Phys. Rev. D 100 (2019) 071301 [arXiv:1902.07625] [INSPIRE].

  106. M. Cadeddu, F. Dordei, C. Giunti, K.A. Kouzakov, E. Picciau and A.I. Studenikin, Potentialities of a low-energy detector based on 4He evaporation to observe atomic effects in coherent neutrino scattering and physics perspectives, Phys. Rev. D 100 (2019) 073014 [arXiv:1907.03302] [INSPIRE].

  107. J. Bernabeu, J. Papavassiliou and J. Vidal, On the observability of the neutrino charge radius, Phys. Rev. Lett. 89 (2002) 101802 [Erratum ibid. 89 (2002) 229902] [hep-ph/0206015] [INSPIRE].

  108. J. Bernabeu, J. Papavassiliou and J. Vidal, The Neutrino charge radius is a physical observable, Nucl. Phys. B 680 (2004) 450 [hep-ph/0210055] [INSPIRE].

  109. J. Papavassiliou, J. Bernabeu and M. Passera, Neutrino-nuclear coherent scattering and the effective neutrino charge radius, PoS HEP2005 (2006) 192 [hep-ph/0512029] [INSPIRE].

  110. M. Cadeddu, C. Giunti, K.A. Kouzakov, Y.F. Li, A.I. Studenikin and Y.Y. Zhang, Neutrino Charge Radii from COHERENT Elastic Neutrino-Nucleus Scattering, Phys. Rev. D 98 (2018) 113010 [Erratum ibid. 101 (2020) 059902] [arXiv:1810.05606] [INSPIRE].

  111. COHERENT collaboration, COHERENT 2018 at the Spallation Neutron Source, arXiv:1803.09183 [INSPIRE].

  112. P.S. Amanik and G.C. McLaughlin, Neutron Form Factor from Neutrino-Nucleus Coherent Elastic Scattering, arXiv:0707.4191 [INSPIRE].

  113. P.S. Amanik and G.C. McLaughlin, Nuclear neutron form factor from neutrino nucleus coherent elastic scattering, J. Phys. G 36 (2009) 015105 [INSPIRE].

  114. G. Co’, M. Anguiano and A.M. Lallena, Nuclear structure uncertainties in coherent elastic neutrino-nucleus scattering, JCAP 04 (2020) 044 [arXiv:2001.04684] [INSPIRE].

  115. P. Coloma, I. Esteban, M.C. Gonzalez-Garcia and J. Menendez, Determining the nuclear neutron distribution from Coherent Elastic neutrino-Nucleus Scattering: current results and future prospects, JHEP 08 (2020) 030 [arXiv:2006.08624] [INSPIRE].

    ADS  Google Scholar 

  116. N. Van Dessel, V. Pandey, H. Ray and N. Jachowicz, Nuclear Structure Physics in Coherent Elastic Neutrino-Nucleus Scattering, arXiv:2007.03658 [INSPIRE].

  117. M. Hoferichter, J. Menéndez and A. Schwenk, Coherent elastic neutrino-nucleus scattering: EFT analysis and nuclear responses, Phys. Rev. D 102 (2020) 074018 [arXiv:2007.08529] [INSPIRE].

  118. O. Tomalak and R.J. Hill, Theory of elastic neutrino-electron scattering, Phys. Rev. D 101 (2020) 033006 [arXiv:1907.03379] [INSPIRE].

  119. O. Tomalak, How Well Do We Know Neutrino-Electron Scattering? EFT Approach, PoS NuFact2019 (2020) 049 [arXiv:1911.03528] [INSPIRE].

  120. R.J. Hill and O. Tomalak, On the effective theory of neutrino-electron and neutrino-quark interactions, Phys. Lett. B 805 (2020) 135466 [arXiv:1911.01493] [INSPIRE].

    MathSciNet  Google Scholar 

  121. S. Sakakibara and L.M. Sehgal, Corrections to Electron-neutrino Muon-neutrino Universality in Neutral Current Interactions, Phys. Lett. B 83 (1979) 77 [INSPIRE].

    ADS  Google Scholar 

  122. F.J. Botella, C.S. Lim and W.J. Marciano, Radiative Corrections to Neutrino Indices of Refraction, Phys. Rev. D 35 (1987) 896 [INSPIRE].

    ADS  Google Scholar 

  123. T.S. Kosmas, O.G. Miranda, D.K. Papoulias, M. Tortola and J.W.F. Valle, Sensitivities to neutrino electromagnetic properties at the TEXONO experiment, Phys. Lett. B 750 (2015) 459 [arXiv:1506.08377] [INSPIRE].

    ADS  Google Scholar 

  124. CHARM-II collaboration, Experimental study of electromagnetic properties of the muon-neutrino in neutrino-electron scattering, Phys. Lett. B 345 (1995) 115 [INSPIRE].

  125. B.J. Scholz, First Observation of Coherent Elastic Neutrino-Nucleus Scattering, Ph.D. Thesis, University of Chicago (2017) [DOI] [arXiv:1904.01155] [INSPIRE].

  126. B. Kayser, Majorana Neutrinos and their Electromagnetic Properties, Phys. Rev. D 26 (1982) 1662 [INSPIRE].

    ADS  Google Scholar 

  127. R.E. Shrock, Electromagnetic Properties and Decays of Dirac and Majorana Neutrinos in a General Class of Gauge Theories, Nucl. Phys. B 206 (1982) 359 [INSPIRE].

    ADS  Google Scholar 

  128. C. Giunti and A. Studenikin, Neutrino electromagnetic interactions: a window to new physics, Rev. Mod. Phys. 87 (2015) 531 [arXiv:1403.6344] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  129. G. Fernandez Moroni, J. Estrada, G. Cancelo, S.E. Holland, E.E. Paolini and H.T. Diehl, Sub-electron readout noise in a Skipper CCD fabricated on high resistivity silicon, Exper. Astron. 34 (2012) 43 [arXiv:1106.1839] [INSPIRE].

    ADS  Google Scholar 

  130. SENSEI collaboration, Single-electron and single-photon sensitivity with a silicon Skipper CCD, Phys. Rev. Lett. 119 (2017) 131802 [arXiv:1706.00028] [INSPIRE].

  131. DUNE collaboration, Experiment Simulation Configurations Used in DUNE CDR, arXiv:1606.09550 [INSPIRE].

  132. DUNE collaboration, Deep Underground Neutrino Experiment (DUNE), Far Detector Technical Design Report, Volume II DUNE Physics, arXiv:2002.03005 [INSPIRE].

  133. J. Erler, Calculation of the QED coupling \( \hat{a} \)(MZ) in the modified minimal subtraction scheme, Phys. Rev. D 59 (1999) 054008 [hep-ph/9803453] [INSPIRE].

  134. J. Erler and M.J. Ramsey-Musolf, The Weak mixing angle at low energies, Phys. Rev. D 72 (2005) 073003 [hep-ph/0409169] [INSPIRE].

  135. J. Erler and R. Ferro-Hernández, Weak Mixing Angle in the Thomson Limit, JHEP 03 (2018) 196 [arXiv:1712.09146] [INSPIRE].

    ADS  Google Scholar 

  136. Particle Data Group collaboration, Review of Particle Physics, Phys. Rev. D 98 (2018) 030001 [INSPIRE].

  137. W. Pauli and M.E. Rose, Remarks on the Polarization Effects in the Positron Theory, Phys. Rev. 49 (1936) 462 [INSPIRE].

    ADS  MATH  Google Scholar 

  138. R.P. Feynman, Space-time approach to quantum electrodynamics, Phys. Rev. 76 (1949) 769 [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  139. Y.S. Tsai, High-Energy Electron-Electron Scattering, Phys. Rev. 120 (1960) 269 [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  140. M. Vanderhaeghen, J.M. Friedrich, D. Lhuillier, D. Marchand, L. Van Hoorebeke and J. Van de Wiele, QED radiative corrections to virtual Compton scattering, Phys. Rev. C 62 (2000) 025501 [hep-ph/0001100] [INSPIRE].

  141. M. Heller, O. Tomalak, M. Vanderhaeghen and S. Wu, Leading Order Corrections to the Bethe-Heitler Process in the γpl+lp Reaction, Phys. Rev. D 100 (2019) 076013 [arXiv:1906.02706] [INSPIRE].

  142. A. Djouadi and C. Verzegnassi, Virtual Very Heavy Top Effects in LEP/SLC Precision Measurements, Phys. Lett. B 195 (1987) 265 [INSPIRE].

    ADS  Google Scholar 

  143. A. Djouadi, O(ααs) Vacuum Polarization Functions of the Standard Model Gauge Bosons, Nuovo Cim. A 100 (1988) 357 [INSPIRE].

    ADS  Google Scholar 

  144. B.A. Kniehl, Two Loop Corrections to the Vacuum Polarizations in Perturbative QCD, Nucl. Phys. B 347 (1990) 86 [INSPIRE].

    ADS  Google Scholar 

  145. S. Fanchiotti, B.A. Kniehl and A. Sirlin, Incorporation of QCD effects in basic corrections of the electroweak theory, Phys. Rev. D 48 (1993) 307 [hep-ph/9212285] [INSPIRE].

  146. R.E. Behrends and A. Sirlin, Effect of mass splittings on the conserved vector current, Phys. Rev. Lett. 4 (1960) 186 [INSPIRE].

    ADS  Google Scholar 

  147. V. Dmitrasinovic and S.J. Pollock, Isospin breaking corrections to nucleon electroweak form-factors in the constituent quark model, Phys. Rev. C 52 (1995) 1061 [hep-ph/9504414] [INSPIRE].

  148. G.A. Miller, Nucleon charge symmetry breaking and parity violating electron proton scattering, Phys. Rev. C 57 (1998) 1492 [nucl-th/9711036] [INSPIRE].

  149. R. Lewis, Isospin breaking in the vector current of the nucleon, Eur. Phys. J. A 32 (2007) 409 [nucl-th/0608079] [INSPIRE].

  150. B. Kubis and R. Lewis, Isospin violation in the vector form factors of the nucleon, Phys. Rev. C 74 (2006) 015204 [nucl-th/0605006] [INSPIRE].

  151. R. Pohl et al., The size of the proton, Nature 466 (2010) 213 [INSPIRE].

  152. A. Antognini et al., Proton Structure from the Measurement of 2S-2P Transition Frequencies of Muonic Hydrogen, Science 339 (2013) 417 [INSPIRE].

  153. S. Kopecky, P. Riehs, J.A. Harvey and N.W. Hill, New Measurement of the Charge Radius of the Neutron, Phys. Rev. Lett. 74 (1995) 2427 [INSPIRE].

    ADS  Google Scholar 

  154. S. Kopecky et al., Neutron charge radius determined from the energy dependence of the neutron transmission of liquid Pb-208 and Bi-209, Phys. Rev. C 56 (1997) 2229 [INSPIRE].

  155. P.E. Shanahan et al., Determination of the strange nucleon form factors, Phys. Rev. Lett. 114 (2015) 091802 [arXiv:1403.6537] [INSPIRE].

  156. J. Green et al., High-precision calculation of the strange nucleon electromagnetic form factors, Phys. Rev. D 92 (2015) 031501 [arXiv:1505.01803] [INSPIRE].

  157. R.S. Sufian, Y.-B. Yang, A. Alexandru, T. Draper, J. Liang and K.-F. Liu, Strange Quark Magnetic Moment of the Nucleon at the Physical Point, Phys. Rev. Lett. 118 (2017) 042001 [arXiv:1606.07075] [INSPIRE].

  158. D. Djukanovic, K. Ottnad, J. Wilhelm and H. Wittig, Strange electromagnetic form factors of the nucleon with Nf = 2 + 1 \( \mathcal{O} \)(a)-improved Wilson fermions, Phys. Rev. Lett. 123 (2019) 212001 [arXiv:1903.12566] [INSPIRE].

    ADS  Google Scholar 

  159. C. Alexandrou et al., Nucleon strange electromagnetic form factors, Phys. Rev. D 101 (2020) 031501 [arXiv:1909.10744] [INSPIRE].

  160. B.D. Serot, Semileptonic Weak and Electromagnetic Interactions with Nuclei: Nuclear Current Operators Through Order \( {\left(v/c\right)}_{Nucleon^2} \), Nucl. Phys. A 308 (1978) 457 [INSPIRE].

    ADS  Google Scholar 

  161. J. Walecka, Theoretical nuclear and subnuclear physics, Oxford Stud. Nucl. Phys. 16 (1995) 1 [INSPIRE].

    Google Scholar 

  162. C.J. Horowitz and J. Piekarewicz, Impact of spin-orbit currents on the electroweak skin of neutron-rich nuclei, Phys. Rev. C 86 (2012) 045503 [arXiv:1208.2249] [INSPIRE].

  163. C.J. Horowitz et al., Weak charge form factor and radius of 208Pb through parity violation in electron scattering, Phys. Rev. C 85 (2012) 032501 [arXiv:1202.1468] [INSPIRE].

  164. J. Erler and S. Su, The Weak Neutral Current, Prog. Part. Nucl. Phys. 71 (2013) 119 [arXiv:1303.5522] [INSPIRE].

    ADS  Google Scholar 

  165. M. Cadeddu, F. Dordei, C. Giunti, Y.F. Li, E. Picciau and Y.Y. Zhang, Physics results from the first COHERENT observation of coherent elastic neutrino-nucleus scattering in argon and their combination with cesium-iodide data, Phys. Rev. D 102 (2020) 015030 [arXiv:2005.01645] [INSPIRE].

  166. European Muon collaboration, The ratio of the nucleon structure functions F2n for iron and deuterium, Phys. Lett. B 123 (1983) 275 [INSPIRE].

  167. O. Hen, G.A. Miller, E. Piasetzky and L.B. WEinstein, Nucleon-Nucleon Correlations, Short-lived Excitations, and the Quarks Within, Rev. Mod. Phys. 89 (2017) 045002 [arXiv:1611.09748] [INSPIRE].

  168. CLAS collaboration, Modified structure of protons and neutrons in correlated pairs, Nature 566 (2019) 354 [arXiv:2004.12065] [INSPIRE].

  169. I. Angeli and K. Marinova, Table of experimental nuclear ground state charge radii: An update, Atom. Data Nucl. Data Tabl. 99 (2013) 69 [INSPIRE].

    ADS  Google Scholar 

  170. H. De Vries, C. De Jager and C. De Vries, Nuclear charge and magnetization density distribution parameters from elastic electron scattering, Atom. Data Nucl. Data Tabl. 36 (1987) 495 [INSPIRE].

  171. C.R. Ottermann, C. Schmitt, G.G. Simon, F. Borkowski and V.H. Walther, Elastic electron scattering from 40Ar, Nucl. Phys. A 379 (1982) 396 [INSPIRE].

    ADS  Google Scholar 

  172. T.W. Donnelly, J. Dubach and I. Sick, Isospin Dependences in Parity Violating Electron Scattering, Nucl. Phys. A 503 (1989) 589 [INSPIRE].

    ADS  Google Scholar 

  173. C.J. Horowitz, S.J. Pollock, P.A. Souder and R. Michaels, Parity violating measurements of neutron densities, Phys. Rev. C 63 (2001) 025501 [nucl-th/9912038] [INSPIRE].

  174. D.R. Yennie, D.G. Ravenhall and R.N. Wilson, Phase-Shift Calculation of High-Energy Electron Scattering, Phys. Rev. 95 (1954) 500 [INSPIRE].

    ADS  MATH  Google Scholar 

  175. D.R. Yennie, F.L. Boos and D.G. Ravenhall, Analytic Distorted-Wave Approximation for High-Energy Electron Scattering Calculations, Phys. Rev. 137 (1965) B882 [INSPIRE].

    ADS  MATH  Google Scholar 

  176. W. Czyż and K. Gottfried, Inelastic electron scattering from fluctuations in the nuclear charge distribution, Annals Phys. 21 (1963) 47.

    ADS  MATH  Google Scholar 

  177. K.S. Kim, L.E. Wright, Y. Jin and D.W. Kosik, Approximate treatment of electron Coulomb distortion in quasielastic (e, e′) reactions, Phys. Rev. C 54 (1996) 2515 [nucl-th/0503082] [INSPIRE].

  178. K.S. Kim, L.E. Wright and D.A. Resler, Coulomb distortion effects for electron or positron induced (e, e′) reactions in the quasielastic region, Phys. Rev. C 64 (2001) 044607 [nucl-th/0103032] [INSPIRE].

  179. C.J. Horowitz, Parity violating elastic electron scattering and Coulomb distortions, Phys. Rev. C 57 (1998) 3430 [nucl-th/9801011] [INSPIRE].

  180. S. Abrahamyan et al., Measurement of the Neutron Radius of 208Pb Through Parity-Violation in Electron Scattering, Phys. Rev. Lett. 108 (2012) 112502 [arXiv:1201.2568] [INSPIRE].

  181. K.S. Kumar, Electroweak probe of neutron skins of nuclei, Annals Phys. 412 (2020) 168012.

    Google Scholar 

  182. D. Becker et al., The P2 experiment, arXiv:1802.04759 [INSPIRE].

  183. M.-K. Cheoun, E. Ha and T. Kajino, Reactions on 40Ar involving solar neutrinos and neutrinos from core-collapsing supernovae, Phys. Rev. C 83 (2011) 028801 [INSPIRE].

  184. F. Capozzi, S.W. Li, G. Zhu and J.F. Beacom, DUNE as the Next-Generation Solar Neutrino Experiment, Phys. Rev. Lett. 123 (2019) 131803 [arXiv:1808.08232] [INSPIRE].

    ADS  Google Scholar 

  185. U. Gayer et al., Experimental M1 response of 40Ar as a benchmark for neutrino-nucleus scattering calculations, Phys. Rev. C 100 (2019) 034305 [INSPIRE].

  186. J. Yang, J.A. Hernandez and J. Piekarewicz, Electroweak probes of ground state densities, Phys. Rev. C 100 (2019) 054301 [arXiv:1908.10939] [INSPIRE].

  187. C.G. Payne, S. Bacca, G. Hagen, W. Jiang and T. Papenbrock, Coherent elastic neutrino-nucleus scattering on 40Ar from first principles, Phys. Rev. C 100 (2019) 061304 [arXiv:1908.09739] [INSPIRE].

  188. C. Barbieri, N. Rocco and V. Somà, Lepton Scattering from 40Ar and Ti in the Quasielastic Peak Region, Phys. Rev. C 100 (2019) 062501 [arXiv:1907.01122] [INSPIRE].

  189. K. Patton, J. Engel, G.C. McLaughlin and N. Schunck, Neutrino-nucleus coherent scattering as a probe of neutron density distributions, Phys. Rev. C 86 (2012) 024612 [arXiv:1207.0693] [INSPIRE].

  190. F. Burger, K. Jansen, M. Petschlies and G. Pientka, Leading hadronic contributions to the running of the electroweak coupling constants from lattice QCD, JHEP 11 (2015) 215 [arXiv:1505.03283] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  191. M. Cè, A. Gérardin, K. Ottnad and H.B. Meyer, The leading hadronic contribution to the running of the Weinberg angle using covariant coordinate-space methods, PoS LATTICE2018 (2018) 137 [arXiv:1811.08669] [INSPIRE].

  192. M. Cè et al., The hadronic contribution to the running of the electromagnetic coupling and the electroweak mixing angle, PoS LATTICE2019 (2019) 010 [arXiv:1910.09525] [INSPIRE].

  193. R. Rapp, SNS Neutrino Flux, in Workshop on Fundamental Physics at the Second Target Station, 26–27 July 2019 [ ].

  194. C. Blanco, D. Hooper and P. Machado, Constraining Sterile Neutrino Interpretations of the LSND and MiniBooNE Anomalies with Coherent Neutrino Scattering Experiments, Phys. Rev. D 101 (2020) 075051 [arXiv:1901.08094] [INSPIRE].

  195. A. Bungau et al., Proposal for an Electron Antineutrino Disappearance Search Using High-Rate 8Li Production and Decay, Phys. Rev. Lett. 109 (2012) 141802 [arXiv:1205.4419] [INSPIRE].

  196. M. Foxe, A. Bernstein, C. Hagmann, T. Joshi, I. Jovanovic, K. Kazkaz and S. Sangiorgio, Measuring the Low Energy Nuclear Quenching Factor in Liquid Argon for a Coherent Neutrino Scatter Detector, Nucl. Phys. B Proc. Suppl. 229-232 (2012) 512 [INSPIRE].

    ADS  Google Scholar 

  197. G.C. Rich, Measurement of Low-Energy Nuclear-Recoil Quenching Factors in CsI[Na] and Statistical Analysis of the First Observation of Coherent, Elastic Neutrino-Nucleus Scattering, Ph.D. Thesis, University of North Carolina (2017) [INSPIRE].

  198. H. Bonet et al., First constraints on elastic neutrino nucleus scattering in the fully coherent regime from the Conus experiment, arXiv:2011.00210 [INSPIRE].

  199. C.M. Lewis and J.I. Collar, Response of undoped cryogenic CsI to low-energy nuclear recoils, arXiv:2101.03264 [INSPIRE].

  200. J. Alonso et al., Expression of Interest for a Novel Search for CP-violation in the Neutrino Sector: DAEdALUS, arXiv:1006.0260 [INSPIRE].

  201. F. Zhao, Y. Li, C. Han, Q. Fu and X. Chen, IsoDAR Neutrino Experiment Simulation with Proton and Deuteron Beams, arXiv:1509.03922 [INSPIRE].

  202. A. Adelmann et al., Cyclotrons as Drivers for Precision Neutrino Measurements, Adv. High Energy Phys. 2014 (2014) 347097 [arXiv:1307.6465] [INSPIRE].

  203. J.M. Conrad, M.H. Shaevitz, I. Shimizu, J. Spitz, M. Toups and L. Winslow, Precision \( {\overline{\nu}}_e \)-electron scattering measurements with IsoDAR to search for new physics, Phys. Rev. D 89 (2014) 072010 [arXiv:1307.5081] [INSPIRE].

  204. NOvA collaboration, The NOvA Technical Design Report, FERMILAB-DESIGN-2007-01 [INSPIRE].

  205. T2K collaboration, The T2K Experiment, Nucl. Instrum. Meth. A 659 (2011) 106 [arXiv:1106.1238] [INSPIRE].

  206. I. Esteban, M.C. Gonzalez-Garcia, M. Maltoni, T. Schwetz and A. Zhou, The fate of hints: updated global analysis of three-flavor neutrino oscillations, JHEP 09 (2020) 178 [arXiv:2007.14792] [INSPIRE].

    ADS  Google Scholar 

  207. J.A. Aguilar-Saavedra and G.C. Branco, Unitarity triangles and geometrical description of CP-violation with Majorana neutrinos, Phys. Rev. D 62 (2000) 096009 [hep-ph/0007025] [INSPIRE].

  208. Y. Farzan and A.Y. Smirnov, Leptonic unitarity triangle and CP-violation, Phys. Rev. D 65 (2002) 113001 [hep-ph/0201105] [INSPIRE].

  209. H.-J. He and X.-J. Xu, Connecting Leptonic Unitarity Triangle to Neutrino Oscillation, Phys. Rev. D 89 (2014) 073002 [arXiv:1311.4496] [INSPIRE].

  210. S.A.R. Ellis, K.J. Kelly and S.W. Li, Leptonic Unitarity Triangles, Phys. Rev. D 102 (2020) 115027 [arXiv:2004.13719] [INSPIRE].

    ADS  Google Scholar 

  211. S.A.R. Ellis, K.J. Kelly and S.W. Li, Current and Future Neutrino Oscillation Constraints on Leptonic Unitarity, JHEP 12 (2020) 068 [arXiv:2008.01088] [INSPIRE].

    ADS  Google Scholar 

  212. DARWIN collaboration, Solar neutrino detection sensitivity in DARWIN via electron scattering, Eur. Phys. J. C 80 (2020) 1133 [arXiv:2006.03114] [INSPIRE].

  213. S. Reichard, Prospects for the detection of solar neutrinos in darwin via elastic electron scattering, Fermilab Theoretical Physics Seminar, August 2020.

  214. LSND collaboration, Evidence for neutrino oscillations from the observation of \( {\overline{\nu}}_e \) appearance in a \( {\overline{\nu}}_{\mu } \) beam, Phys. Rev. D 64 (2001) 112007 [hep-ex/0104049] [INSPIRE].

  215. MiniBooNE collaboration, Significant Excess of ElectronLike Events in the MiniBooNE Short-Baseline Neutrino Experiment, Phys. Rev. Lett. 121 (2018) 221801 [arXiv:1805.12028] [INSPIRE].

  216. M. Dentler, A. Hernández-Cabezudo, J. Kopp, M. Maltoni and T. Schwetz, Sterile neutrinos or flux uncertainties? — Status of the reactor anti-neutrino anomaly, JHEP 11 (2017) 099 [arXiv:1709.04294] [INSPIRE].

    ADS  Google Scholar 

  217. M. Dentler et al., Updated Global Analysis of Neutrino Oscillations in the Presence of eV-Scale Sterile Neutrinos, JHEP 08 (2018) 010 [arXiv:1803.10661] [INSPIRE].

  218. A. Diaz, C.A. Argüelles, G.H. Collin, J.M. Conrad and M.H. Shaevitz, Where Are We With Light Sterile Neutrinos?, Phys. Rept. 884 (2020) 1 [arXiv:1906.00045] [INSPIRE].

    ADS  Google Scholar 

  219. S. Böser et al., Status of Light Sterile Neutrino Searches, Prog. Part. Nucl. Phys. 111 (2020) 103736 [arXiv:1906.01739] [INSPIRE].

  220. K.N. Abazajian et al., Neutrino Physics from the Cosmic Microwave Background and Large Scale Structure, Astropart. Phys. 63 (2015) 66 [arXiv:1309.5383] [INSPIRE].

  221. X. Chu, B. Dasgupta and J. Kopp, Sterile neutrinos with secret interactions — lasting friendship with cosmology, JCAP 10 (2015) 011 [arXiv:1505.02795] [INSPIRE].

    ADS  Google Scholar 

  222. S. Bridle, J. Elvin-Poole, J. Evans, S. Fernandez, P. Guzowski and S. Soldner-Rembold, A Combined View of Sterile-Neutrino Constraints from CMB and Neutrino Oscillation Measurements, Phys. Lett. B 764 (2017) 322 [arXiv:1607.00032] [INSPIRE].

    ADS  Google Scholar 

  223. Planck collaboration, Planck 2018 results. VI. Cosmological parameters, Astron. Astrophys. 641 (2020) A6 [arXiv:1807.06209] [INSPIRE].

  224. A.J. Anderson et al., Measuring Active-to-Sterile Neutrino Oscillations with Neutral Current Coherent Neutrino-Nucleus Scattering, Phys. Rev. D 86 (2012) 013004 [arXiv:1201.3805] [INSPIRE].

  225. T.S. Kosmas, D.K. Papoulias, M. Tortola and J.W.F. Valle, Probing light sterile neutrino signatures at reactor and Spallation Neutron Source neutrino experiments, Phys. Rev. D 96 (2017) 063013 [arXiv:1703.00054] [INSPIRE].

  226. COHERENT collaboration, Sensitivity of the COHERENT Experiment to Accelerator-Produced Dark Matter, Phys. Rev. D 102 (2020) 052007 [arXiv:1911.06422] [INSPIRE].

  227. A. Bernstein, N. Bowden, B.L. Goldblum, P. Huber, I. Jovanovic and J. Mattingly, Colloquium: Neutrino detectors as tools for nuclear security, Rev. Mod. Phys. 92 (2020) 011003 [arXiv:1908.07113] [INSPIRE].

  228. V. Brdar, P. Huber and J. Kopp, Antineutrino monitoring of spent nuclear fuel, Phys. Rev. Applied 8 (2017) 054050 [arXiv:1606.06309] [INSPIRE].

  229. P. Jaffke and P. Huber, Determining reactor fuel type from continuous antineutrino monitoring, Phys. Rev. Applied 8 (2017) 034005 [arXiv:1612.06494] [INSPIRE].

  230. E. Christensen, P. Huber and P. Jaffke, Antineutrino reactor safeguards — a case study, arXiv:1312.1959 [INSPIRE].

  231. B.K. Cogswell and P. Huber, Detection of Breeding Blankets Using Antineutrinos, Sci. Global Secur. 24 (2016) 114.

    ADS  Google Scholar 

  232. H.P. Lima et al., Neutrinos Angra experiment: commissioning and first operational measurements, 2019 JINST 14 P06010 [arXiv:1812.11604] [INSPIRE].

  233. M. Bowen and P. Huber, Reactor neutrino applications and coherent elastic neutrino nucleus scattering, Phys. Rev. D 102 (2020) 053008 [arXiv:2005.10907] [INSPIRE].

  234. S. Weinberg, A Model of Leptons, Phys. Rev. Lett. 19 (1967) 1264 [INSPIRE].

    ADS  Google Scholar 

  235. L.M. Sehgal, Differences in the Coherent Interactions of νe, νμ and ντ, Phys. Lett. B 162 (1985) 370 [INSPIRE].

    ADS  Google Scholar 

  236. G. Degrassi, A. Sirlin and W.J. Marciano, Effective Electromagnetic Form-factor of the Neutrino, Phys. Rev. D 39 (1989) 287 [INSPIRE].

    ADS  Google Scholar 

  237. LSND collaboration, The Liquid scintillator neutrino detector and LAMPF neutrino source, Nucl. Instrum. Meth. A 388 (1997) 149 [nucl-ex/9605002] [INSPIRE].

  238. R. Mertig, M. Böhm and A. Denner, FEYN CALC: Computer algebraic calculation of Feynman amplitudes, Comput. Phys. Commun. 64 (1991) 345 [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  239. V. Shtabovenko, R. Mertig and F. Orellana, New Developments in FeynCalc 9.0, Comput. Phys. Commun. 207 (2016) 432 [arXiv:1601.01167] [INSPIRE].

  240. T. Hahn and M. Pérez-Victoria, Automatized one loop calculations in four-dimensions and D-dimensions, Comput. Phys. Commun. 118 (1999) 153 [hep-ph/9807565] [INSPIRE].

  241. D. Binosi and L. Theussl, JaxoDraw: A Graphical user interface for drawing Feynman diagrams, Comput. Phys. Commun. 161 (2004) 76 [hep-ph/0309015] [INSPIRE].

  242. Wolfram Inc., Mathematica, Version, Champaign, IL (2020).

  243. P. Barbeau et al., The coherent elastic ν-nucleus cross-section at the SNS, Tech. Rep., Duke University (2015).

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Oleksandr Tomalak.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

ArXiv ePrint: 2011.05960

Rights and permissions

Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tomalak, O., Machado, P., Pandey, V. et al. Flavor-dependent radiative corrections in coherent elastic neutrino-nucleus scattering. J. High Energ. Phys. 2021, 97 (2021).

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI:


  • Effective Field Theories
  • Neutrino Physics
  • Precision QED
  • Lattice QCD