Skip to main content
SpringerLink
Log in
Menu
Find a journal Publish with us
Search
Cart
  1. Home
  2. Journal of High Energy Physics
  3. Article

Bra-ket wormholes in gravitationally prepared states

  • Regular Article - Theoretical Physics
  • Open Access
  • Published: 01 February 2021
  • volume 2021, Article number: 9 (2021)
Download PDF

You have full access to this open access article

Journal of High Energy Physics Aims and scope Submit manuscript
Bra-ket wormholes in gravitationally prepared states
Download PDF
  • Yiming Chen1,
  • Victor Gorbenko2,3 &
  • Juan Maldacena3 
  • 923 Accesses

  • 104 Citations

  • 18 Altmetric

  • 1 Mention

  • Explore all metrics

  • Cite this article

A preprint version of the article is available at arXiv.

Abstract

We consider two dimensional CFT states that are produced by a gravitational path integral.

As a first case, we consider a state produced by Euclidean AdS2 evolution followed by flat space evolution. We use the fine grained entropy formula to explore the nature of the state. We find that the naive hyperbolic space geometry leads to a paradox. This is solved if we include a geometry that connects the bra with the ket, a bra-ket wormhole. The semiclassical Lorentzian interpretation leads to CFT state entangled with an expanding and collapsing Friedmann cosmology.

As a second case, we consider a state produced by Lorentzian dS2 evolution, again followed by flat space evolution. The most naive geometry also leads to a similar paradox. We explore several possible bra-ket wormholes. The most obvious one leads to a badly divergent temperature. The most promising one also leads to a divergent temperature but by making a projection onto low energy states we find that it has features that look similar to the previous Euclidean case. In particular, the maximum entropy of an interval in the future is set by the de Sitter entropy.

Download to read the full article text

Working on a manuscript?

Avoid the common mistakes

References

  1. S. Ryu and T. Takayanagi, Holographic derivation of entanglement entropy from AdS/CFT, Phys. Rev. Lett. 96 (2006) 181602 [hep-th/0603001] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. V.E. Hubeny, M. Rangamani and T. Takayanagi, A Covariant holographic entanglement entropy proposal, JHEP 07 (2007) 062 [arXiv:0705.0016] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  3. T. Faulkner, A. Lewkowycz and J. Maldacena, Quantum corrections to holographic entanglement entropy, JHEP 11 (2013) 074 [arXiv:1307.2892] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  4. N. Engelhardt and A.C. Wall, Quantum Extremal Surfaces: Holographic Entanglement Entropy beyond the Classical Regime, JHEP 01 (2015) 073 [arXiv:1408.3203] [INSPIRE].

    Article  ADS  Google Scholar 

  5. G. Penington, Entanglement Wedge Reconstruction and the Information Paradox, JHEP 09 (2020) 002 [arXiv:1905.08255] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. A. Almheiri, N. Engelhardt, D. Marolf and H. Maxfield, The entropy of bulk quantum fields and the entanglement wedge of an evaporating black hole, JHEP 12 (2019) 063 [arXiv:1905.08762] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. A. Almheiri, T. Hartman, J. Maldacena, E. Shaghoulian and A. Tajdini, Replica Wormholes and the Entropy of Hawking Radiation, JHEP 05 (2020) 013 [arXiv:1911.12333] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. G. Penington, S.H. Shenker, D. Stanford and Z. Yang, Replica wormholes and the black hole interior, arXiv:1911.11977 [INSPIRE].

  9. J. Hartle and S. Hawking, Wave Function of the Universe, Phys. Rev. D 28 (1983) 2960.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. R. Jackiw, Lower Dimensional Gravity, Nucl. Phys. B 252 (1985) 343 [INSPIRE].

    Article  ADS  Google Scholar 

  11. C. Teitelboim, Gravitation and Hamiltonian Structure in Two Space-Time Dimensions, Phys. Lett. B 126 (1983) 41 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  12. J. Cotler, K. Jensen and A. Maloney, Low-dimensional de Sitter quantum gravity, JHEP 06 (2020) 048 [arXiv:1905.03780] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. J. Maldacena, G.J. Turiaci and Z. Yang, Two dimensional Nearly de Sitter gravity, arXiv:1904.01911 [INSPIRE].

  14. D.N. Page, Density Matrix of the Universe, Phys. Rev. D 34 (1986) 2267 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  15. J. Maldacena and X.-L. Qi, Eternal traversable wormhole, arXiv:1804.00491 [INSPIRE].

  16. D. Stanford, More quantum noise from wormholes, arXiv:2008.08570 [INSPIRE].

  17. J. Hartle, S.W. Hawking and T. Hertog, Local Observation in Eternal inflation, Phys. Rev. Lett. 106 (2011) 141302 [arXiv:1009.2525] [INSPIRE].

    Article  ADS  Google Scholar 

  18. J. Engelsöy, T.G. Mertens and H. Verlinde, An investigation of AdS2 backreaction and holography, JHEP 07 (2016) 139 [arXiv:1606.03438] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. K. Jensen, Chaos in AdS2 Holography, Phys. Rev. Lett. 117 (2016) 111601 [arXiv:1605.06098] [INSPIRE].

    Article  ADS  Google Scholar 

  20. J. Maldacena, D. Stanford and Z. Yang, Conformal symmetry and its breaking in two dimensional Nearly Anti-de-Sitter space, PTEP 2016 (2016) 12C104 [arXiv:1606.01857] [INSPIRE].

  21. H. Geng and A. Karch, Massive islands, JHEP 09 (2020) 121 [arXiv:2006.02438] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. P. Calabrese and J.L. Cardy, Evolution of entanglement entropy in one-dimensional systems, J. Stat. Mech. 0504 (2005) P04010 [cond-mat/0503393] [INSPIRE].

    MathSciNet  MATH  Google Scholar 

  23. S. Ghoshal and A.B. Zamolodchikov, Boundary S matrix and boundary state in two-dimensional integrable quantum field theory, Int. J. Mod. Phys. A 9 (1994) 3841 [Erratum ibid. 9 (1994) 4353] [hep-th/9306002] [INSPIRE].

  24. D. Marolf, S. Wang and Z. Wang, Probing phase transitions of holographic entanglement entropy with fixed area states, JHEP 12 (2020) 084 [arXiv:2006.10089] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  25. X. Dong and H. Wang, Enhanced corrections near holographic entanglement transitions: a chaotic case study, JHEP 11 (2020) 007 [arXiv:2006.10051] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. A. Almheiri, R. Mahajan and J. Maldacena, Islands outside the horizon, arXiv:1910.11077 [INSPIRE].

  27. S.D. Mathur, The Information paradox: A Pedagogical introduction, Class. Quant. Grav. 26 (2009) 224001 [arXiv:0909.1038] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. A. Almheiri, D. Marolf, J. Polchinski and J. Sully, Black Holes: Complementarity or Firewalls?, JHEP 02 (2013) 062 [arXiv:1207.3123] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. P. Gao, D.L. Jafferis and A.C. Wall, Traversable Wormholes via a Double Trace Deformation, JHEP 12 (2017) 151 [arXiv:1608.05687]x [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. J. Maldacena, D. Stanford and Z. Yang, Diving into traversable wormholes, Fortsch. Phys. 65 (2017) 1700034 [arXiv:1704.05333] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  31. P. Saad, S.H. Shenker and D. Stanford, A semiclassical ramp in SYK and in gravity, arXiv:1806.06840 [INSPIRE].

  32. P. Saad, S.H. Shenker and D. Stanford, JT gravity as a matrix integral, arXiv:1903.11115 [INSPIRE].

  33. J. Maldacena, A. Milekhin and F. Popov, Traversable wormholes in four dimensions, arXiv:1807.04726 [INSPIRE].

  34. S.B. Giddings and G.J. Turiaci, Wormhole calculus, replicas, and entropies, JHEP 09 (2020) 194 [arXiv:2004.02900] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  35. N. Engelhardt, S. Fischetti and A. Maloney, Free Energy from Replica Wormholes, arXiv:2007.07444 [INSPIRE].

  36. A. Almheiri, R. Mahajan, J. Maldacena and Y. Zhao, The Page curve of Hawking radiation from semiclassical geometry, JHEP 03 (2020) 149 [arXiv:1908.10996] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  37. Y. Chen, Pulling Out the Island with Modular Flow, JHEP 03 (2020) 033 [arXiv:1912.02210] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  38. P. Calabrese and J. Cardy, Entanglement and correlation functions following a local quench: a conformal field theory approach, J. Stat. Mech. 0710 (2007) P10004 [arXiv:0708.3750] [INSPIRE].

    Article  Google Scholar 

  39. T. Hartman and J. Maldacena, Time Evolution of Entanglement Entropy from Black Hole Interiors, JHEP 05 (2013) 014 [arXiv:1303.1080] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  40. T. Takayanagi, Holographic Dual of BCFT, Phys. Rev. Lett. 107 (2011) 101602 [arXiv:1105.5165] [INSPIRE].

    Article  ADS  Google Scholar 

  41. M. Fujita, T. Takayanagi and E. Tonni, Aspects of AdS/BCFT, JHEP 11 (2011) 043 [arXiv:1108.5152] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  42. S. Cooper, M. Rozali, B. Swingle, M. Van Raamsdonk, C. Waddell and D. Wakeham, Black Hole Microstate Cosmology, JHEP 07 (2019) 065 [arXiv:1810.10601] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  43. P. Simidzija and M. Van Raamsdonk, Holo-ween, JHEP 12 (2020) 028 [arXiv:2006.13943] [INSPIRE].

  44. I. Akal, Y. Kusuki, T. Takayanagi and Z. Wei, Codimension two holography for wedges, Phys. Rev. D 102 (2020) 126007 [arXiv:2007.06800] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  45. S. Antonini and B. Swingle, Cosmology at the end of the world, Nature Phys. 16 (2020) 881 [arXiv:1907.06667] [INSPIRE].

    Article  ADS  Google Scholar 

  46. T. Anous, J. Kruthoff and R. Mahajan, Density matrices in quantum gravity, SciPost Phys. 9 (2020) 045 [arXiv:2006.17000] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  47. J.M. Maldacena and L. Maoz, Wormholes in AdS, JHEP 02 (2004) 053 [hep-th/0401024] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  48. D. Marolf and H. Maxfield, Transcending the ensemble: baby universes, spacetime wormholes, and the order and disorder of black hole information, JHEP 08 (2020) 044 [arXiv:2002.08950] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  49. D. Marolf and J.E. Santos, AdS Euclidean wormholes, arXiv:2101.08875 [INSPIRE].

  50. A. Strominger, The dS/CFT correspondence, JHEP 10 (2001) 034 [hep-th/0106113] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  51. E. Witten, Quantum gravity in de Sitter space, in Strings 2001: International Conference, 6, 2001 [hep-th/0106109] [INSPIRE].

  52. J.M. Maldacena, Non-Gaussian features of primordial fluctuations in single field inflationary models, JHEP 05 (2003) 013 [astro-ph/0210603] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  53. A.O. Bärvinsky and A.Y. Kamenshchik, Cosmological landscape from nothing: Some like it hot, JCAP 09 (2006) 014 [hep-th/0605132] [INSPIRE].

    Article  ADS  Google Scholar 

  54. T. Hertog and J. Hartle, Holographic No-Boundary Measure, JHEP 05 (2012) 095 [arXiv:1111.6090] [INSPIRE].

    Article  ADS  Google Scholar 

  55. M. Alishahiha, A. Karch, E. Silverstein and D. Tong, The dS/dS correspondence, AIP Conf. Proc. 743 (2004) 393 [hep-th/0407125] [INSPIRE].

    Article  ADS  Google Scholar 

  56. J. Maldacena and A. Milekhin, SYK wormhole formation in real time, arXiv:1912.03276 [INSPIRE].

  57. J. Khoury, B.A. Ovrut, N. Seiberg, P.J. Steinhardt and N. Turok, From big crunch to big bang, Phys. Rev. D 65 (2002) 086007 [hep-th/0108187] [INSPIRE].

    Article  ADS  Google Scholar 

  58. X. Dong, X.-L. Qi, Z. Shangnan and Z. Yang, Effective entropy of quantum fields coupled with gravity, JHEP 10 (2020) 052 [arXiv:2007.02987] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  59. S.R. Coleman, Black Holes as Red Herrings: Topological Fluctuations and the Loss of Quantum Coherence, Nucl. Phys. B 307 (1988) 867 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  60. S.B. Giddings and A. Strominger, Loss of Incoherence and Determination of Coupling Constants in Quantum Gravity, Nucl. Phys. B 307 (1988) 854 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  61. A.D. Linde, Quantum creation of an open inflationary universe, Phys. Rev. D 58 (1998) 083514 [gr-qc/9802038] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  62. H. Casini, I. Salazar Landea and G. Torroba, The g-theorem and quantum information theory, JHEP 10 (2016) 140 [arXiv:1607.00390] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  63. M. Sasaki, T. Tanaka and K. Yamamoto, Euclidean vacuum mode functions for a scalar field on open de Sitter space, Phys. Rev. D 51 (1995) 2979 [gr-qc/9412025] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  64. G. Vidal, Entanglement Renormalization, Phys. Rev. Lett. 99 (2007) 220405 [cond-mat/0512165] [INSPIRE].

    Article  ADS  Google Scholar 

  65. B. Swingle, Entanglement Renormalization and Holography, Phys. Rev. D 86 (2012) 065007 [arXiv:0905.1317] [INSPIRE].

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Jadwin Hall, Princeton University, Princeton, New Jersey, USA

    Yiming Chen

  2. SITP, Stanford University, Palo Alto, California, USA

    Victor Gorbenko

  3. Institute for Advanced Study, Princeton, New Jersey, USA

    Victor Gorbenko & Juan Maldacena

Authors
  1. Yiming Chen
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Victor Gorbenko
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Juan Maldacena
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Victor Gorbenko.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

ArXiv ePrint: 2007.16091

Rights and permissions

Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Gorbenko, V. & Maldacena, J. Bra-ket wormholes in gravitationally prepared states. J. High Energ. Phys. 2021, 9 (2021). https://doi.org/10.1007/JHEP02(2021)009

Download citation

  • Received: 15 September 2020

  • Accepted: 17 December 2020

  • Published: 01 February 2021

  • DOI: https://doi.org/10.1007/JHEP02(2021)009

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • 2D Gravity
  • Models of Quantum Gravity

Working on a manuscript?

Avoid the common mistakes

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Publish your research
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our imprints

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support

Not affiliated

Springer Nature

© 2023 Springer Nature