Skip to main content
SpringerLink
Log in
Menu
Find a journal Publish with us
Search
Cart
  1. Home
  2. Journal of High Energy Physics
  3. Article

Kerr-Schild double copy and complex worldlines

  • Regular Article - Theoretical Physics
  • Open Access
  • Published: 27 February 2020
  • volume 2020, Article number: 180 (2020)
Download PDF

You have full access to this open access article

Journal of High Energy Physics Aims and scope Submit manuscript
Kerr-Schild double copy and complex worldlines
Download PDF
  • Ibrahima Bah1,
  • Ross Dempsey1 &
  • Peter Weck1 
  • 496 Accesses

  • 38 Citations

  • 1 Altmetric

  • Explore all metrics

  • Cite this article

A preprint version of the article is available at arXiv.

Abstract

We use the classical double copy to identify a necessary condition for Maxwell theory sources to constitute single copies of Kerr-Schild solutions to Einstein’s equations. In the case of four-dimensional Kerr-Schild spacetimes on Minkowski backgrounds, we extend this condition to a parameterization of the corresponding single copies. These are given by Líenard-Wiechert fields of charges on complex worldlines. This unifies the known instances of the Kerr-Schild double copy black holes on flat four-dimensional backgrounds into a single framework. Furthermore, we use the more generic condition identified to show why the black ring in five dimensions does not admit Kerr-Schild coordinates.

Download to read the full article text

Working on a manuscript?

Avoid the common mistakes

References

  1. Z. Bern, J.J.M. Carrasco and H. Johansson, New Relations for Gauge-Theory Amplitudes, Phys. Rev. D 78 (2008) 085011 [arXiv:0805.3993] [INSPIRE].

  2. Z. Bern, T. Dennen, Y.-t. Huang and M. Kiermaier, Gravity as the Square of Gauge Theory, Phys. Rev. D 82 (2010) 065003 [arXiv:1004.0693] [INSPIRE].

  3. Z. Bern, J.J.M. Carrasco and H. Johansson, Perturbative Quantum Gravity as a Double Copy of Gauge Theory, Phys. Rev. Lett. 105 (2010) 061602 [arXiv:1004.0476] [INSPIRE].

  4. R.P. Kerr and A. Schild, Republication of: A new class of vacuum solutions of the Einstein field equations, Gen. Rel. Grav. 41 (2009) 2485.

    Article  ADS  MathSciNet  Google Scholar 

  5. R. Monteiro, D. O’Connell and C.D. White, Black holes and the double copy, JHEP 12 (2014) 056 [arXiv:1410.0239] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  6. A. Luna, R. Monteiro, I. Nicholson and D. O’Connell, Type D Spacetimes and the Weyl Double Copy, Class. Quant. Grav. 36 (2019) 065003 [arXiv:1810.08183] [INSPIRE].

  7. A. Ilderton, Screw-symmetric gravitational waves: a double copy of the vortex, Phys. Lett. B 782 (2018) 22 [arXiv:1804.07290] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  8. A. Luna, R. Monteiro, D. O’Connell and C.D. White, The classical double copy for Taub-NUT spacetime, Phys. Lett. B 750 (2015) 272 [arXiv:1507.01869] [INSPIRE].

    Article  ADS  Google Scholar 

  9. M. Carrillo-González, R. Penco and M. Trodden, The classical double copy in maximally symmetric spacetimes, JHEP 04 (2018) 028 [arXiv:1711.01296] [INSPIRE].

  10. M. Carrillo González, B. Melcher, K. Ratliff, S. Watson and C.D. White, The classical double copy in three spacetime dimensions, JHEP 07 (2019) 167 [arXiv:1904.11001] [INSPIRE].

  11. A. Luna, R. Monteiro, I. Nicholson, D. O’Connell and C.D. White, The double copy: Bremsstrahlung and accelerating black holes, JHEP 06 (2016) 023 [arXiv:1603.05737] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  12. Y. Choquet-Bruhat and R.P. Geroch, Global aspects of the Cauchy problem in general relativity, Commun. Math. Phys. 14 (1969) 329 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  13. E.T. Newman, Maxwell fields and shear free null geodesic congruences, Class. Quant. Grav. 21 (2004) 3197 [gr-qc/0402056] [INSPIRE].

  14. E. Newman and R. Penrose, An Approach to gravitational radiation by a method of spin coefficients, J. Math. Phys. 3 (1962) 566 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  15. P. Nurowski and A. Taghavi-Chabert, A Goldberg-Sachs theorem in dimension three, Class. Quant. Grav. 32 (2015) 115009 [arXiv:1502.00304] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  16. E.T. Newman and A.I. Janis, Note on the Kerr spinning particle metric, J. Math. Phys. 6 (1965) 915 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  17. H. Erbin, Janis-newman algorithm: Generating rotating and nut charged black holes, Universe 3 (2017) 19.

    Article  ADS  Google Scholar 

  18. J.B. Griffiths and J. Podolský, A New look at the Plebański-Demiański family of solutions, Int. J. Mod. Phys. D 15 (2006) 335 [gr-qc/0511091] [INSPIRE].

  19. S. Caser, Electrodynamics in Dirac’s Gauge: A Geometrical Equivalence, Found. Phys. Lett. 14 (2001) 263.

    Article  MathSciNet  Google Scholar 

  20. R. Emparan and H.S. Reall, Black Holes in Higher Dimensions, Living Rev. Rel. 11 (2008) 6 [arXiv:0801.3471] [INSPIRE].

    MATH  Google Scholar 

  21. R. Emparan and H.S. Reall, Black Rings, Class. Quant. Grav. 23 (2006) R169 [hep-th/0608012] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  22. B. Ett and D. Kastor, An Extended Kerr-Schild Ansatz, Class. Quant. Grav. 27 (2010) 185024 [arXiv:1002.4378] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  23. T. Málek and V. Pravda, Kerr-Schild spacetimes with (A)dS background, Class. Quant. Grav. 28 (2011) 125011 [arXiv:1009.1727] [INSPIRE].

  24. Z. Mirzaiyan, B. Mirza and E. Sharifian, Generating five-dimensional Myers-Perry black hole solution using quaternions, Annals Phys. 389 (2018) 11 [arXiv:1708.08969] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  25. N. Arkani-Hamed, Y.-t. Huang and D. O’Connell, Kerr black holes as elementary particles, JHEP 01 (2020) 046 [arXiv:1906.10100] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  26. R.W. Lind and E.T. Newman, Complexification of the algebraically special gravitational fields, J. Math. Phys. 15 (1974) 1103.

    Article  ADS  MathSciNet  Google Scholar 

  27. E.T. Newman, Lìenard-wiechert fields and general relativity, J. Math. Phys. 15 (1974) 44.

    Article  ADS  Google Scholar 

  28. G.C. Debney, R.P. Kerr and A. Schild, Solutions of the Einstein and Einstein-Maxwell Equations, J. Math. Phys. 10 (1969) 1842 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  29. J.N. Goldberg and R.K. Sachs, Republication of: A theorem on petrov types, Gen. Rel. Grav. 41 (2009) 433.

    Article  ADS  Google Scholar 

  30. A.Z. Petrov, The classification of spaces defining gravitational fields, Gen. Rel. Grav. 32 (2000) 1665.

    Article  ADS  MathSciNet  Google Scholar 

  31. A.H. Bilge and M. Gürses, Generalized kerr-schild transformation, in Group Theoretical Methods in Physics, M. Serdaroğlu and E. Ínönü, eds., pp. 252, Springer Berlin Heidelberg, Germany, (1983).

  32. W. Chen and H. Lü, Kerr-Schild structure and harmonic 2-forms on (A)dS-Kerr-NUT metrics, Phys. Lett. B 658 (2008) 158 [arXiv:0705.4471] [INSPIRE].

  33. W. Israel, Source of the kerr metric, Phys. Rev. D 2 (1970) 641 [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  34. H. Balasin and H. Nachbagauer, Distributional energy momentum tensor of the Kerr-Newman space-time family, Class. Quant. Grav. 11 (1994) 1453 [gr-qc/9312028] [INSPIRE].

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited

Author information

Authors and Affiliations

  1. Department of Physics and Astronomy, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD, 21218, USA

    Ibrahima Bah, Ross Dempsey & Peter Weck

Authors
  1. Ibrahima Bah
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Ross Dempsey
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Peter Weck
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Ross Dempsey.

Additional information

ArXiv ePrint: 1910.04197

Rights and permissions

Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bah, I., Dempsey, R. & Weck, P. Kerr-Schild double copy and complex worldlines. J. High Energ. Phys. 2020, 180 (2020). https://doi.org/10.1007/JHEP02(2020)180

Download citation

  • Received: 06 December 2019

  • Accepted: 07 February 2020

  • Published: 27 February 2020

  • DOI: https://doi.org/10.1007/JHEP02(2020)180

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Black Holes
  • Classical Theories of Gravity
  • Gauge-gravity correspondence

Working on a manuscript?

Avoid the common mistakes

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Publish your research
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our imprints

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support

Not affiliated

Springer Nature

© 2023 Springer Nature