Abstract
We study the chameleon field dark matter, dubbed scalaron, in F (R) gravity in the Big Bang Nucleosynthesis (BBN) epoch. With an R2-correction term required to solve the singularity problem for F (R) gravity, we first find that the scalaron dynamics is governed by the R2 term and the chameleon mechanism in the early universe, which makes the scalaron physics model-independent regarding the low-energy scale modification. In viable F (R) dark energy models including the R2 correction, our analysis suggests the scalaron universally evolves in a way with a bouncing oscillation irrespective of the low-energy modification for the late-time cosmic acceleration. Consequently, we find a universal bound on the scalaron mass in the BBN epoch, to be reflected on the constraint for the coupling strength of the R2 term, which turns out to be more stringent than the one coming from the fifth force experiments. It is then shown that the scalaron naturally develops a small enough fluctuation in the BBN epoch, hence can avoid the current BBN constraint placed by the latest Planck 2018 data, and can also have a large enough sensitivity to be hunted by the BBN, with more accurate measurements for light element abundances as well as the baryon number density fraction.
Article PDF
Similar content being viewed by others
Avoid common mistakes on your manuscript.
References
Supernova Search collaboration, Observational evidence from supernovae for an accelerating universe and a cosmological constant, Astron. J. 116 (1998) 1009 [astro-ph/9805201] [INSPIRE].
Planck collaboration, Planck 2015 results. XIII. Cosmological parameters, Astron. Astrophys. 594 (2016) A13 [arXiv:1502.01589] [INSPIRE].
S. Nojiri, S.D. Odintsov and V.K. Oikonomou, Modified Gravity Theories on a Nutshell: Inflation, Bounce and Late-time Evolution, Phys. Rept. 692 (2017) 1 [arXiv:1705.11098] [INSPIRE].
J. Khoury and A. Weltman, Chameleon fields: Awaiting surprises for tests of gravity in space, Phys. Rev. Lett. 93 (2004) 171104 [astro-ph/0309300] [INSPIRE].
W. Hu and I. Sawicki, Models of f (R) Cosmic Acceleration that Evade Solar-System Tests, Phys. Rev. D 76 (2007) 064004 [arXiv:0705.1158] [INSPIRE].
A.A. Starobinsky, Disappearing cosmological constant in f (R) gravity, JETP Lett. 86 (2007) 157 [arXiv:0706.2041] [INSPIRE].
S. Tsujikawa, Observational signatures of f (R) dark energy models that satisfy cosmological and local gravity constraints, Phys. Rev. D 77 (2008) 023507 [arXiv:0709.1391] [INSPIRE].
E. Elizalde, S. Nojiri, S.D. Odintsov, L. Sebastiani and S. Zerbini, Non-singular exponential gravity: a simple theory for early- and late-time accelerated expansion, Phys. Rev. D 83 (2011) 086006 [arXiv:1012.2280] [INSPIRE].
A.V. Frolov, A Singularity Problem with f (R) Dark Energy, Phys. Rev. Lett. 101 (2008) 061103 [arXiv:0803.2500] [INSPIRE].
K. Bamba, S. Nojiri and S.D. Odintsov, The Universe future in modified gravity theories: Approaching the finite-time future singularity, JCAP 10 (2008) 045 [arXiv:0807.2575] [INSPIRE].
T. Kobayashi and K.-i. Maeda, Can higher curvature corrections cure the singularity problem in f (R) gravity?, Phys. Rev. D 79 (2009) 024009 [arXiv:0810.5664] [INSPIRE].
A. Dev, D. Jain, S. Jhingan, S. Nojiri, M. Sami and I. Thongkool, Delicate f (R) gravity models with disappearing cosmological constant and observational constraints on the model parameters, Phys. Rev. D 78 (2008) 083515 [arXiv:0807.3445] [INSPIRE].
M. Milgrom, A Modification of the Newtonian dynamics as a possible alternative to the hidden mass hypothesis, Astrophys. J. 270 (1983) 365 [INSPIRE].
V.C. Rubin, N. Thonnard and W.K. Ford Jr., Rotational properties of 21 SC galaxies with a large range of luminosities and radii, from NGC 4605 (R = 4 kpc) to UGC 2885 (R = 122 kpc), Astrophys. J. 238 (1980) 471 [INSPIRE].
D. Clowe et al., A direct empirical proof of the existence of dark matter, Astrophys. J. 648 (2006) L109 [astro-ph/0608407] [INSPIRE].
D.J.E. Marsh, Axion Cosmology, Phys. Rept. 643 (2016) 1 [arXiv:1510.07633] [INSPIRE].
S.D. Odintsov and V.K. Oikonomou, f (R) Gravity Inflation with String-Corrected Axion Dark Matter, Phys. Rev. D 99 (2019) 064049 [arXiv:1901.05363] [INSPIRE].
S.D. Odintsov and V.K. Oikonomou, Unification of Inflation with Dark Energy in f (R) Gravity and Axion Dark Matter, Phys. Rev. D 99 (2019) 104070 [arXiv:1905.03496] [INSPIRE].
S. Nojiri and S.D. Odintsov, Dark energy, inflation and dark matter from modified F (R) gravity, TSPU Bulletin N8 (2011) 7 [arXiv:0807.0685] [INSPIRE].
J.A.R. Cembranos, Dark Matter from R2 gravity, Phys. Rev. Lett. 102 (2009) 141301 [arXiv:0809.1653] [INSPIRE].
T. Katsuragawa and S. Matsuzaki, Cosmic History of Chameleonic Dark Matter in F (R) Gravity, Phys. Rev. D 97 (2018) 064037 [Erratum ibid. D 97 (2018) 129902] [arXiv:1708.08702] [INSPIRE].
T. Katsuragawa and S. Matsuzaki, Dark matter in modified gravity?, Phys. Rev. D 95 (2017) 044040 [arXiv:1610.01016] [INSPIRE].
T. Inagaki, Y. Matsuo and H. Sakamoto, Dark Matter in logarithmic F (R) gravity, Int. J. Mod. Phys. D 28 (2019) 1950157 [arXiv:1905.05503] [INSPIRE].
C. Boehm and P. Fayet, Scalar dark matter candidates, Nucl. Phys. B 683 (2004) 219 [hep-ph/0305261] [INSPIRE].
S. Knapen, T. Lin and K.M. Zurek, Light Dark Matter: Models and Constraints, Phys. Rev. D 96 (2017) 115021 [arXiv:1709.07882] [INSPIRE].
J.-W. Lee, Brief History of Ultra-light Scalar Dark Matter Models, EPJ Web Conf. 168 (2018) 06005 [arXiv:1704.05057] [INSPIRE].
J. García-Bellido, Dark matter with variable masses, Int. J. Mod. Phys. D 2 (1993) 85 [hep-ph/9205216] [INSPIRE].
G.W. Anderson and S.M. Carroll, Dark matter with time dependent mass, in proceedings of the 1st International Conference on Particle Physics and the Early Universe (COSMO 1997), Ambleside, U.K., 15–19 September 1997, pp. 227–229 [astro-ph/9711288] [INSPIRE].
P. Brax, C. van de Bruck, A.-C. Davis, J. Khoury and A. Weltman, Detecting dark energy in orbit: The cosmological chameleon, Phys. Rev. D 70 (2004) 123518 [astro-ph/0408415] [INSPIRE].
S. Capozziello, S. Nojiri and S.D. Odintsov, The role of energy conditions in f (R) cosmology, Phys. Lett. B 781 (2018) 99 [arXiv:1803.08815] [INSPIRE].
S. Nojiri, S.D. Odintsov and S. Tsujikawa, Properties of singularities in (phantom) dark energy universe, Phys. Rev. D 71 (2005) 063004 [hep-th/0501025] [INSPIRE].
S. Capozziello, M. De Laurentis, S. Nojiri and S.D. Odintsov, Classifying and avoiding singularities in the alternative gravity dark energy models, Phys. Rev. D 79 (2009) 124007 [arXiv:0903.2753] [INSPIRE].
S. Nojiri and S.D. Odintsov, The Future evolution and finite-time singularities in F (R)-gravity unifying the inflation and cosmic acceleration, Phys. Rev. D 78 (2008) 046006 [arXiv:0804.3519] [INSPIRE].
T. Katsuragawa, S. Matsuzaki and E. Senaha, F (R) gravity in the early Universe: Electroweak phase transition and chameleon mechanism, Chin. Phys. C 43 (2019) 105101 [arXiv:1812.00640] [INSPIRE].
A.L. Erickcek, N. Barnaby, C. Burrage and Z. Huang, Catastrophic Consequences of Kicking the Chameleon, Phys. Rev. Lett. 110 (2013) 171101 [arXiv:1304.0009] [INSPIRE].
A. Belokon and A. Tokareva, Light scalar dark matter coupled to a trace of energy-momentum tensor, arXiv:1812.04065 [INSPIRE].
Particle Data Group, Review of Particle Physics, Phys. Rev. D 98 (2018) 030001 [INSPIRE].
J. Gasser and H. Leutwyler, Quark Masses, Phys. Rept. 87 (1982) 77 [INSPIRE].
S. Sarkar, Big bang nucleosynthesis and physics beyond the standard model, Rept. Prog. Phys. 59 (1996) 1493 [hep-ph/9602260] [INSPIRE].
Planck collaboration, Planck 2018 results. VI. Cosmological parameters, arXiv:1807.06209 [INSPIRE].
A.L. Erickcek, N. Barnaby, C. Burrage and Z. Huang, Chameleons in the Early Universe: Kicks, Rebounds and Particle Production, Phys. Rev. D 89 (2014) 084074 [arXiv:1310.5149] [INSPIRE].
J. Gasser and H. Leutwyler, Chiral Perturbation Theory to One Loop, Annals Phys. 158 (1984) 142 [INSPIRE].
J. Gasser and H. Leutwyler, Chiral Perturbation Theory: Expansions in the Mass of the Strange Quark, Nucl. Phys. B 250 (1985) 465 [INSPIRE].
X.L. Ren, L.S. Geng, J. Martin Camalich, J. Meng and H. Toki, Octet baryon masses in next-to-next-to-next-to-leading order covariant baryon chiral perturbation theory, JHEP 12 (2012) 073 [arXiv:1209.3641] [INSPIRE].
G.E. Brown and M. Rho, Scaling effective Lagrangians in a dense medium, Phys. Rev. Lett. 66 (1991) 2720 [INSPIRE].
Y.-L. Li, Y.-L. Ma and M. Rho, Chiral-scale effective theory including a dilatonic meson, Phys. Rev. D 95 (2017) 114011 [arXiv:1609.07014] [INSPIRE].
Y.-L. Li and Y.-L. Ma, Derivation of Brown-Rho scaling from scale-chiral perturbation theory, arXiv:1710.02839 [INSPIRE].
Open Access
This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited
Author information
Authors and Affiliations
Corresponding author
Additional information
ArXiv ePrint: 1908.04146
Rights and permissions
Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.
About this article
Cite this article
Chen, H., Katsuragawa, T., Matsuzaki, S. et al. Big Bang Nucleosynthesis hunts chameleon dark matter. J. High Energ. Phys. 2020, 155 (2020). https://doi.org/10.1007/JHEP02(2020)155
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1007/JHEP02(2020)155