Skip to main content
Springer Nature Link
Account
Menu
Find a journal Publish with us Track your research
Search
Cart
  1. Home
  2. Journal of High Energy Physics
  3. Article

Source terms for electroweak baryogenesis in the vev-insertion approximation beyond leading order

  • Regular Article - Theoretical Physics
  • Open access
  • Published: 14 February 2020
  • Volume 2020, article number 90, (2020)
  • Cite this article
Download PDF

You have full access to this open access article

Journal of High Energy Physics Aims and scope Submit manuscript
Source terms for electroweak baryogenesis in the vev-insertion approximation beyond leading order
Download PDF
  • Marieke Postma1 &
  • Jorinde van de Vis  ORCID: orcid.org/0000-0002-8110-19831,2 
  • 371 Accesses

  • 11 Citations

  • 8 Altmetric

  • 1 Mention

  • Explore all metrics

A preprint version of the article is available at arXiv.

Abstract

In electroweak baryogenesis the baryon asymmetry of the universe is created during the electroweak phase transition. The quantum transport equations governing the dynamics of the plasma particles can be derived in the vev-insertion approximation, which treats the vev-dependent part of the particle masses as a perturbation. We calculate the next-to-leading order (NLO) contribution to the CP-violating source term and CP-conserving relaxation rate, corresponding to Feynman diagrams for the self-energies with four mass insertions. We consider both a pair of Weyl fermions and a pair of complex scalars, that scatter off the bubble wall. We find: (i) The NLO correction becomes large for \( \mathcal{O} \)(1) couplings. If only the Standard Model (SM) Higgs obtains a vev during the phase transition, this implies the vev-insertion approximation breaks down for top quarks. (ii) The resonant enhancement of the source term and relaxation rate, that exists at leading order in the limit of degenerate thermal masses for the fermions/scalars, persists at NLO.

Article PDF

Download to read the full article text

Similar content being viewed by others

A different perspective on the vev insertion approximation for electroweak baryogenesis

Article Open access 09 September 2021

Electroweak-like baryogenesis with new chiral matter

Article Open access 29 July 2021

Resummation and cancellation of the VIA source in electroweak baryogenesis

Article Open access 20 December 2022
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

References

  1. A. Arhrib, P.M. Ferreira and R. Santos, Are There Hidden Scalars in LHC Higgs Results ?, JHEP 03 (2014) 053 [arXiv:1311.1520] [INSPIRE].

    Article  ADS  Google Scholar 

  2. C.-Y. Chen, S. Dawson and M. Sher, Heavy Higgs Searches and Constraints on Two Higgs Doublet Models, Phys. Rev. D 88 (2013) 015018 [Erratum ibid. D 88 (2013) 039901] [arXiv:1305.1624] [INSPIRE].

  3. W.-F. Chang, T. Modak and J.N. Ng, Signal for a light singlet scalar at the LHC, Phys. Rev. D 97 (2018) 055020 [arXiv:1711.05722] [INSPIRE].

    ADS  Google Scholar 

  4. CMS collaboration, A Search for Beyond Standard Model Light Bosons Decaying into Muon Pairs, CMS-PAS-HIG-16-035 (2016).

  5. C. Englert et al., Precision Measurements of Higgs Couplings: Implications for New Physics Scales, J. Phys. G 41 (2014) 113001 [arXiv:1403.7191] [INSPIRE].

    Article  ADS  Google Scholar 

  6. I. Brivio and M. Trott, The Standard Model as an Effective Field Theory, Phys. Rept. 793 (2019) 1 [arXiv:1706.08945] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  7. T. Han and Y. Li, Genuine CP-odd Observables at the LHC, Phys. Lett. B 683 (2010) 278 [arXiv:0911.2933] [INSPIRE].

    Article  ADS  Google Scholar 

  8. F. Boudjema, R.M. Godbole, D. Guadagnoli and K.A. Mohan, Lab-frame observables for probing the top-Higgs interaction, Phys. Rev. D 92 (2015) 015019 [arXiv:1501.03157] [INSPIRE].

    ADS  Google Scholar 

  9. J. Ellis, Discrete Glimpses of the Physics Landscape after the Higgs Discovery, J. Phys. Conf. Ser. 631 (2015) 012001 [arXiv:1501.05418] [INSPIRE].

    Article  Google Scholar 

  10. A. Askew, P. Jaiswal, T. Okui, H.B. Prosper and N. Sato, Prospect for measuring the CP phase in the hττ coupling at the LHC, Phys. Rev. 91 (2015) 075014 [arXiv:1501.03156] [INSPIRE].

    Google Scholar 

  11. F. Demartin, F. Maltoni, K. Mawatari and M. Zaro, Higgs production in association with a single top quark at the LHC, Eur. Phys. J. C 75 (2015) 267 [arXiv:1504.00611] [INSPIRE].

    Article  ADS  Google Scholar 

  12. T. Chupp, P. Fierlinger, M. Ramsey-Musolf and J. Singh, Electric dipole moments of atoms, molecules, nuclei and particles, Rev. Mod. Phys. 91 (2019) 015001 [arXiv:1710.02504] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  13. C. Balázs, G. White and J. Yue, Effective field theory, electric dipole moments and electroweak baryogenesis, JHEP 03 (2017) 030 [arXiv:1612.01270] [INSPIRE].

  14. Y.T. Chien, V. Cirigliano, W. Dekens, J. de Vries and E. Mereghetti, Direct and indirect constraints on CP-violating Higgs-quark and Higgs-gluon interactions, JHEP 02 (2016) 011 [arXiv:1510.00725] [INSPIRE].

    Article  ADS  Google Scholar 

  15. V. Cirigliano, W. Dekens, J. de Vries and E. Mereghetti, Constraining the top-Higgs sector of the Standard Model Effective Field Theory, Phys. Rev. D 94 (2016) 034031 [arXiv:1605.04311] [INSPIRE].

    ADS  Google Scholar 

  16. J. de Vries, M. Postma, J. van de Vis and G. White, Electroweak Baryogenesis and the Standard Model Effective Field Theory, JHEP 01 (2018) 089 [arXiv:1710.04061] [INSPIRE].

    Article  Google Scholar 

  17. ACME collaboration, Improved limit on the electric dipole moment of the electron, Nature 562 (2018) 355 [INSPIRE].

  18. LISA collaboration, Laser Interferometer Space Antenna, arXiv:1702.00786 [INSPIRE].

  19. C. Caprini et al., Science with the space-based interferometer eLISA. II: Gravitational waves from cosmological phase transitions, JCAP 04 (2016) 001 [arXiv:1512.06239] [INSPIRE].

    ADS  Google Scholar 

  20. T. Konstandin, Quantum Transport and Electroweak Baryogenesis, Phys. Usp. 56 (2013) 747.

    Article  ADS  Google Scholar 

  21. L. Kadanoff and G. Baym, Quantum Statistical Mechanics, Benjamin, New York, U.S.A. (1962).

    MATH  Google Scholar 

  22. T. Prokopec, M.G. Schmidt and S. Weinstock, Transport equations for chiral fermions to order h bar and electroweak baryogenesis. Part 1, Annals Phys. 314 (2004) 208 [hep-ph/0312110] [INSPIRE].

  23. E.A. Calzetta and B.-L.B. Hu, Nonequilibrium Quantum Field Theory, Cambridge University Press, (2008).

  24. P. Huet and A.E. Nelson, CP violation and electroweak baryogenesis in extensions of the standard model, Phys. Lett. B 355 (1995) 229 [hep-ph/9504427] [INSPIRE].

  25. A. Riotto, The more relaxed supersymmetric electroweak baryogenesis, Phys. Rev. D 58 (1998) 095009 [hep-ph/9803357] [INSPIRE].

  26. C. Lee, V. Cirigliano and M.J. Ramsey-Musolf, Resonant relaxation in electroweak baryogenesis, Phys. Rev. D 71 (2005) 075010 [hep-ph/0412354] [INSPIRE]

  27. T. Konstandin, T. Prokopec and M.G. Schmidt, Kinetic description of fermion flavor mixing and CP-violating sources for baryogenesis, Nucl. Phys. B 716 (2005) 373 [hep-ph/0410135] [INSPIRE].

  28. A.I. Bochkarev, S.V. Kuzmin and M.E. Shaposhnikov, Electroweak baryogenesis and the Higgs boson mass problem, Phys. Lett. B 244 (1990) 275 [INSPIRE].

    Article  ADS  Google Scholar 

  29. N. Turok and J. Zadrozny, Phase transitions in the two doublet model, Nucl. Phys. B 369 (1992) 729 [INSPIRE].

    Article  ADS  Google Scholar 

  30. A.T. Davies, C.D. froggatt, G. Jenkins and R.G. Moorhouse, Baryogenesis constraints on two Higgs doublet models, Phys. Lett. B 336 (1994) 464 [INSPIRE].

  31. J.M. Cline and P.-A. Lemieux, Electroweak phase transition in two Higgs doublet models, Phys. Rev. D 55 (1997) 3873 [hep-ph/9609240] [INSPIRE].

  32. J.M. Cline, K. Kainulainen and M. Trott, Electroweak Baryogenesis in Two Higgs Doublet Models and B meson anomalies, JHEP 11 (2011) 089 [arXiv:1107.3559] [INSPIRE].

    Article  ADS  Google Scholar 

  33. G.C. Dorsch, S.J. Huber, T. Konstandin and J.M. No, A Second Higgs Doublet in the Early Universe: Baryogenesis and Gravitational Waves, JCAP 05 (2017) 052 [arXiv:1611.05874] [INSPIRE].

    Article  ADS  Google Scholar 

  34. J.O. Andersen et al., Nonperturbative Analysis of the Electroweak Phase Transition in the Two Higgs Doublet Model, Phys. Rev. Lett. 121 (2018) 191802 [arXiv:1711.09849] [INSPIRE].

    Article  ADS  Google Scholar 

  35. T. Gorda, A. Helset, L. Niemi, T.V.I. Tenkanen and D.J. Weir, Three-dimensional effective theories for the two Higgs doublet model at high temperature, JHEP 02 (2019) 081 [arXiv:1802.05056] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  36. X. Zhang, S.K. Lee, K. Whisnant and B.L. Young, Phenomenology of a nonstandard top quark Yukawa coupling, Phys. Rev. D 50 (1994) 7042 [hep-ph/9407259] [INSPIRE].

  37. D. Bödeker, L. Fromme, S.J. Huber and M. Seniuch, The baryon asymmetry in the standard model with a low cut-off, JHEP 02 (2005) 026 [hep-ph/0412366] [INSPIRE].

  38. H.-K. Guo, Y.-Y. Li, T. Liu, M. Ramsey-Musolf and J. Shu, Lepton-Flavored Electroweak Baryogenesis, Phys. Rev. D 96 (2017) 115034 [arXiv:1609.09849] [INSPIRE].

    ADS  Google Scholar 

  39. C.-W. Chiang, K. Fuyuto and E. Senaha, Electroweak Baryogenesis with Lepton Flavor Violation, Phys. Lett. B 762 (2016) 315 [arXiv:1607.07316] [INSPIRE].

    Article  ADS  Google Scholar 

  40. V. Cirigliano, C. Lee, M.J. Ramsey-Musolf and S. Tulin, Flavored Quantum Boltzmann Equations, Phys. Rev. D 81 (2010) 103503 [arXiv:0912.3523] [INSPIRE].

    ADS  Google Scholar 

  41. J.S. Schwinger, Brownian motion of a quantum oscillator, J. Math. Phys. 2 (1961) 407 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  42. L.V. Keldysh, Diagram technique for nonequilibrium processes, Zh. Eksp. Teor. Fiz. 47 (1964) 1515 [INSPIRE].

    Google Scholar 

  43. K.-c. Chou, Z.-b. Su, B.-l. Hao and L. Yu, Equilibrium and Nonequilibrium Formalisms Made Unified, Phys. Rept. 118 (1985) 1 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  44. P.S. Bhupal Dev, P. Millington, A. Pilaftsis and D. Teresi, Kadanoff-Baym approach to flavour mixing and oscillations in resonant leptogenesis, Nucl. Phys. B 891 (2015) 128 [arXiv:1410.6434] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  45. T. Liu, M.J. Ramsey-Musolf and J. Shu, Electroweak Beautygenesis: From b → s CP-violation to the Cosmic Baryon Asymmetry, Phys. Rev. Lett. 108 (2012) 221301 [arXiv:1109.4145] [INSPIRE].

    Article  ADS  Google Scholar 

  46. D.J.H. Chung, B. Garbrecht, M.J. Ramsey-Musolf and S. Tulin, Lepton-mediated electroweak baryogenesis, Phys. Rev. D 81 (2010) 063506 [arXiv:0905.4509] [INSPIRE].

    ADS  Google Scholar 

  47. M. Joyce, T. Prokopec and N. Turok, Nonlocal electroweak baryogenesis. Part 1: Thin wall regime, Phys. Rev. D 53 (1996) 2930 [hep-ph/9410281] [INSPIRE].

  48. M. Joyce, T. Prokopec and N. Turok, Efficient electroweak baryogenesis from lepton transport, Phys. Lett. B 338 (1994) 269 [hep-ph/9401352] [INSPIRE].

  49. J. De Vries, M. Postma and J. van de Vis, The role of leptons in electroweak baryogenesis, JHEP 04 (2019) 024 [arXiv:1811.11104] [INSPIRE].

    Article  MathSciNet  Google Scholar 

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited

Author information

Authors and Affiliations

  1. Nikhef, Theory Group, Science Park 105, 1098 XG, Amsterdam, The Netherlands

    Marieke Postma & Jorinde van de Vis

  2. DESY, Notkestraße 85, D-22607, Hamburg, Germany

    Jorinde van de Vis

Authors
  1. Marieke Postma
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Jorinde van de Vis
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Jorinde van de Vis.

Additional information

ArXiv ePrint: 1910.11794

Rights and permissions

Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Postma, M., van de Vis, J. Source terms for electroweak baryogenesis in the vev-insertion approximation beyond leading order. J. High Energ. Phys. 2020, 90 (2020). https://doi.org/10.1007/JHEP02(2020)090

Download citation

  • Received: 11 November 2019

  • Revised: 07 January 2020

  • Accepted: 25 January 2020

  • Published: 14 February 2020

  • DOI: https://doi.org/10.1007/JHEP02(2020)090

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Cosmology of Theories beyond the SM
  • Beyond Standard Model
  • CP violation
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us
  • Track your research

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Journal finder
  • Publish your research
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our imprints

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support
  • Cancel contracts here

Not affiliated

Springer Nature

© 2024 Springer Nature