Skip to main content

Advertisement

SpringerLink
  1. Home
  2. Journal of High Energy Physics
  3. Article
Invisible and displaced dark matter signatures at Belle II
Download PDF
Your article has downloaded

Similar articles being viewed by others

Slider with three articles shown per slide. Use the Previous and Next buttons to navigate the slides or the slide controller buttons at the end to navigate through each slide.

Dark tridents at off-axis liquid argon neutrino detectors

02 January 2019

André de Gouvêa, Patrick J. Fox, … Yue Zhang

Long-lived dark Higgs and inelastic dark matter at Belle II

15 April 2021

Michael Duerr, Torben Ferber, … Kai Schmidt-Hoberg

Forecasting dark showers at Belle II

01 December 2022

Elias Bernreuther, Kai Böse, … Kai Schmidt-Hoberg

Displaced lepton jet signatures from self-interacting dark matter bound states

23 August 2019

Yuhsin Tsai, Tao Xu & Hai-Bo Yu

Searching for dark photon dark matter with cosmic ray antideuterons

18 May 2020

Lisa Randall & Weishuang Linda Xu

Prospects on searches for baryonic Dark Matter produced in $${\varvec{b}}$$ b -hadron decays at LHCb

02 November 2021

Alexandre Brea Rodríguez, Veronika Chobanova, … Carlos Vázquez Sierra

On the challenges of searching for GeV-scale long-lived particles at the LHC

21 April 2021

Elias Bernreuther, Juliana Carrasco Mejia, … Patrick Tunney

Indirect dark-matter detection with MadDM v3.2 – Lines and Loops

22 March 2023

Chiara Arina, Jan Heisig, … Olivier Mattelaer

Prospective study of light dark matter search with a newly proposed DarkSHINE experiment

29 November 2022

Jing Chen, Ji-Yuan Chen, … Yi-Fan Zhu

Download PDF
  • Regular Article - Theoretical Physics
  • Open Access
  • Published: 05 February 2020

Invisible and displaced dark matter signatures at Belle II

  • Michael Duerr1,
  • Torben Ferber2,
  • Christopher Hearty3,5,
  • Felix Kahlhoefer4,
  • Kai Schmidt-Hoberg2 &
  • …
  • Patrick Tunney4 

Journal of High Energy Physics volume 2020, Article number: 39 (2020) Cite this article

  • 422 Accesses

  • 30 Citations

  • 2 Altmetric

  • Metrics details

A preprint version of the article is available at arXiv.

Abstract

Many dark matter models generically predict invisible and displaced signatures at Belle II, but even striking events may be missed by the currently implemented search programme because of inefficient trigger algorithms. Of particular interest are final states with a single photon accompanied by missing energy and a displaced pair of electrons, muons, or hadrons. We argue that a displaced vertex trigger will be essential to achieve optimal sensitivity at Belle II. To illustrate this point, we study a simple but well-motivated model of thermal inelastic dark matter in which this signature naturally occurs and show that otherwise inaccessible regions of parameter space can be tested with such a search. We also evaluate the sensitivity of single-photon searches at BaBar and Belle II to this model and provide detailed calculations of the relic density target.

Download to read the full article text

Working on a manuscript?

Avoid the most common mistakes and prepare your manuscript for journal editors.

Learn more

References

  1. XENON collaboration, Dark matter search results from a one ton-year exposure of XENON1T, Phys. Rev. Lett. 121 (2018) 111302 [arXiv:1805.12562] [INSPIRE].

  2. PandaX-II collaboration, Constraining dark matter models with a light mediator at the PandaX-II experiment, Phys. Rev. Lett. 121 (2018) 021304 [arXiv:1802.06912] [INSPIRE].

  3. B. Batell, M. Pospelov and A. Ritz, Exploring portals to a hidden sector through fixed targets, Phys. Rev. D 80 (2009) 095024 [arXiv:0906.5614] [INSPIRE].

  4. S. Andreas, C. Niebuhr and A. Ringwald, New limits on hidden photons from past electron beam dumps, Phys. Rev. D 86 (2012) 095019 [arXiv:1209.6083] [INSPIRE].

  5. K. Schmidt-Hoberg, F. Staub and M.W. Winkler, Constraints on light mediators: confronting dark matter searches with B physics, Phys. Lett. B 727 (2013) 506 [arXiv:1310.6752] [INSPIRE].

  6. R. Essig, J. Mardon, M. Papucci, T. Volansky and Y.-M. Zhong, Constraining light dark matter with low-energy e+e− colliders, JHEP 11 (2013) 167 [arXiv:1309.5084] [INSPIRE].

  7. E. Izaguirre, G. Krnjaic, P. Schuster and N. Toro, New electron beam-dump experiments to search for MeV to few-GeV dark matter, Phys. Rev. D 88 (2013) 114015 [arXiv:1307.6554] [INSPIRE].

  8. B. Batell, R. Essig and Z. Surujon, Strong constraints on sub-GeV dark sectors from SLAC beam dump E137, Phys. Rev. Lett. 113 (2014) 171802 [arXiv:1406.2698] [INSPIRE].

  9. M.J. Dolan, F. Kahlhoefer, C. McCabe and K. Schmidt-Hoberg, A taste of dark matter: flavour constraints on pseudoscalar mediators, JHEP 03 (2015) 171 [Erratum ibid. 07 (2015) 103] [arXiv:1412.5174] [INSPIRE].

  10. G. Krnjaic, Probing light thermal dark-matter with a Higgs portal mediator, Phys. Rev. D 94 (2016) 073009 [arXiv:1512.04119] [INSPIRE].

  11. M.J. Dolan, T. Ferber, C. Hearty, F. Kahlhoefer and K. Schmidt-Hoberg, Revised constraints and Belle II sensitivity for visible and invisible axion-like particles, JHEP 12 (2017) 094 [arXiv:1709.00009] [INSPIRE].

  12. E. Izaguirre, Y. Kahn, G. Krnjaic and M. Moschella, Testing light dark matter coannihilation with fixed-target experiments, Phys. Rev. D 96 (2017) 055007 [arXiv:1703.06881] [INSPIRE].

  13. S. Knapen, T. Lin and K.M. Zurek, Light dark matter: models and constraints, Phys. Rev. D 96 (2017) 115021 [arXiv:1709.07882] [INSPIRE].

  14. J. Beacham et al., Physics beyond colliders at CERN: beyond the Standard Model working group report, J. Phys. G 47 (2020) 010501 [arXiv:1901.09966] [INSPIRE].

  15. E. Bernreuther, F. Kahlhoefer, M. Krämer and P. Tunney, Strongly interacting dark sectors in the early universe and at the LHC through a simplified portal, submitted to JHEP (2019) [arXiv:1907.04346] [INSPIRE].

  16. K. Bondarenko, A. Boyarsky, T. Bringmann, M. Hufnagel, K. Schmidt-Hoberg and A. Sokolenko, Direct detection and complementary constraints for sub-GeV dark matter, arXiv:1909.08632 [INSPIRE].

  17. A. Filimonova, R. Schäfer and S. Westhoff, Probing dark sectors with long-lived particles at Belle II, arXiv:1911.03490 [INSPIRE].

  18. A. Abashian et al., The Belle detector, Nucl. Instrum. Meth. A 479 (2002) 117 [INSPIRE].

  19. Belle II collaboration, Belle II technical design report, arXiv:1011.0352 [INSPIRE].

  20. Belle II collaboration, The Belle II physics book, PTEP 2019 (2019) 123C01 [arXiv:1808.10567] [INSPIRE].

  21. A. Berlin, N. Blinov, S. Gori, P. Schuster and N. Toro, Cosmology and accelerator tests of strongly interacting dark matter, Phys. Rev. D 97 (2018) 055033 [arXiv:1801.05805] [INSPIRE].

  22. BaBar collaboration, Search for invisible decays of a dark photon produced in e+e− collisions at BaBar, Phys. Rev. Lett. 119 (2017) 131804 [arXiv:1702.03327] [INSPIRE].

  23. Planck collaboration, Planck 2018 results. VI. Cosmological parameters, arXiv:1807.06209 [INSPIRE].

  24. P.F. Depta, M. Hufnagel, K. Schmidt-Hoberg and S. Wild, BBN constraints on the annihilation of MeV-scale dark matter, JCAP 04 (2019) 029 [arXiv:1901.06944] [INSPIRE].

  25. E. Izaguirre, G. Krnjaic and B. Shuve, Discovering inelastic thermal-relic dark matter at colliders, Phys. Rev. D 93 (2016) 063523 [arXiv:1508.03050] [INSPIRE].

  26. A. Berlin and F. Kling, Inelastic dark matter at the LHC lifetime frontier: ATLAS, CMS, LHCb, CODEX-b, FASER and MATHUSLA, Phys. Rev. D 99 (2019) 015021 [arXiv:1810.01879] [INSPIRE].

  27. G. Mohlabeng, Revisiting the dark photon explanation of the muon anomalous magnetic moment, Phys. Rev. D 99 (2019) 115001 [arXiv:1902.05075] [INSPIRE].

  28. M. Duerr, F. Kahlhoefer, K. Schmidt-Hoberg, T. Schwetz and S. Vogl, How to save the WIMP: global analysis of a dark matter model with two s-channel mediators, JHEP 09 (2016) 042 [arXiv:1606.07609] [INSPIRE].

  29. L. Darmé, S. Rao and L. Roszkowski, Light dark Higgs boson in minimal sub-GeV dark matter scenarios, JHEP 03 (2018) 084 [arXiv:1710.08430] [INSPIRE].

  30. K.S. Babu, C.F. Kolda and J. March-Russell, Implications of generalized Z-Z′ mixing, Phys. Rev. D 57 (1998) 6788 [hep-ph/9710441] [INSPIRE].

  31. M.T. Frandsen, F. Kahlhoefer, S. Sarkar and K. Schmidt-Hoberg, Direct detection of dark matter in models with a light Z′, JHEP 09 (2011) 128 [arXiv:1107.2118] [INSPIRE].

  32. T. Bringmann, F. Kahlhoefer, K. Schmidt-Hoberg and P. Walia, Strong constraints on self-interacting dark matter with light mediators, Phys. Rev. Lett. 118 (2017) 141802 [arXiv:1612.00845] [INSPIRE].

  33. C. Boehm, M.J. Dolan and C. McCabe, Increasing Neff with particles in thermal equilibrium with neutrinos, JCAP 12 (2012) 027 [arXiv:1207.0497] [INSPIRE].

  34. G. Bélanger, F. Boudjema, A. Goudelis, A. Pukhov and B. Zaldivar, MicrOMEGAs5.0: freeze-in, Comput. Phys. Commun. 231 (2018) 173 [arXiv:1801.03509] [INSPIRE].

  35. A. Belyaev, N.D. Christensen and A. Pukhov, CalcHEP 3.4 for collider physics within and beyond the Standard Model, Comput. Phys. Commun. 184 (2013) 1729 [arXiv:1207.6082] [INSPIRE].

  36. A. Alloul, N.D. Christensen, C. Degrande, C. Duhr and B. Fuks, FeynRules 2.0 — a complete toolbox for tree-level phenomenology, Comput. Phys. Commun. 185 (2014) 2250 [arXiv:1310.1921] [INSPIRE].

  37. E. Izaguirre, G. Krnjaic, P. Schuster and N. Toro, Analyzing the discovery potential for light dark matter, Phys. Rev. Lett. 115 (2015) 251301 [arXiv:1505.00011] [INSPIRE].

  38. A. Berlin, N. Blinov, G. Krnjaic, P. Schuster and N. Toro, Dark matter, millicharges, axion and scalar particles, gauge bosons and other new physics with LDMX, Phys. Rev. D 99 (2019) 075001 [arXiv:1807.01730] [INSPIRE].

  39. V.V. Ezhela, S.B. Lugovsky and O.V. Zenin, Hadronic part of the muon g − 2 estimated on the \( {\sigma}_{tot}^{2003} \) e+e− → hadrons) evaluated data compilation, hep-ph/0312114 [INSPIRE].

  40. Particle Data Group collaboration, Review of particle physics, Phys. Rev. D 98 (2018) 030001 [INSPIRE].

  41. A. Hook, E. Izaguirre and J.G. Wacker, Model independent bounds on kinetic mixing, Adv. High Energy Phys. 2011 (2011) 859762 [arXiv:1006.0973] [INSPIRE].

  42. J.L. Feng and J. Smolinsky, Impact of a resonance on thermal targets for invisible dark photon searches, Phys. Rev. D 96 (2017) 095022 [arXiv:1707.03835] [INSPIRE].

  43. M. Battaglieri et al., U.S. cosmic visions: new ideas in dark matter 2017 — community report, in U.S. cosmic visions: new ideas in dark matter, College Park, MD, U.S.A., 23–25 March 2017 [FERMILAB-CONF-17-282] [arXiv:1707.04591] [INSPIRE].

  44. P. Gondolo and G. Gelmini, Cosmic abundances of stable particles: improved analysis, Nucl. Phys. B 360 (1991) 145 [INSPIRE].

  45. K. Griest and D. Seckel, Three exceptions in the calculation of relic abundances, Phys. Rev. D 43 (1991) 3191 [INSPIRE].

  46. J. Edsjo and P. Gondolo, Neutralino relic density including coannihilations, Phys. Rev. D 56 (1997) 1879 [hep-ph/9704361] [INSPIRE].

  47. D. Banerjee et al., Dark matter search in missing energy events with NA64, Phys. Rev. Lett. 123 (2019) 121801 [arXiv:1906.00176] [INSPIRE].

  48. P. deNiverville, M. Pospelov and A. Ritz, Observing a light dark matter beam with neutrino experiments, Phys. Rev. D 84 (2011) 075020 [arXiv:1107.4580] [INSPIRE].

  49. MiniBooNE collaboration, Dark matter search in a proton beam dump with MiniBooNE, Phys. Rev. Lett. 118 (2017) 221803 [arXiv:1702.02688] [INSPIRE].

  50. A. Berlin, S. Gori, P. Schuster and N. Toro, Dark sectors at the Fermilab SeaQuest experiment, Phys. Rev. D 98 (2018) 035011 [arXiv:1804.00661] [INSPIRE].

  51. Y.-D. Tsai, P. deNiverville and M.X. Liu, The high-energy frontier of the intensity frontier: closing the dark photon, inelastic dark matter and muon g − 2 windows, arXiv:1908.07525 [INSPIRE].

  52. J.L. Feng, I. Galon, F. Kling and S. Trojanowski, ForwArd Search ExpeRiment at the LHC, Phys. Rev. D 97 (2018) 035001 [arXiv:1708.09389] [INSPIRE].

  53. J.P. Chou, D. Curtin and H.J. Lubatti, New detectors to explore the lifetime frontier, Phys. Lett. B 767 (2017) 29 [arXiv:1606.06298] [INSPIRE].

  54. V.V. Gligorov, S. Knapen, M. Papucci and D.J. Robinson, Searching for long-lived particles: a compact detector for exotics at LHCb, Phys. Rev. D 97 (2018) 015023 [arXiv:1708.09395] [INSPIRE].

  55. LDMX collaboration, Light Dark Matter eXperiment (LDMX), arXiv:1808.05219 [INSPIRE].

  56. N.F. Bell, G. Busoni and I.W. Sanderson, Loop effects in direct detection, JCAP 08 (2018) 017 [Erratum ibid. 01 (2019) E01] [arXiv:1803.01574] [INSPIRE].

  57. T. Abe, M. Fujiwara and J. Hisano, Loop corrections to dark matter direct detection in a pseudoscalar mediator dark matter model, JHEP 02 (2019) 028 [arXiv:1810.01039] [INSPIRE].

  58. F. Ertas and F. Kahlhoefer, Loop-induced direct detection signatures from CP-violating scalar mediators, JHEP 06 (2019) 052 [arXiv:1902.11070] [INSPIRE].

  59. SuperCDMS collaboration, Projected sensitivity of the SuperCDMS SNOLAB experiment, Phys. Rev. D 95 (2017) 082002 [arXiv:1610.00006] [INSPIRE].

  60. C. Degrande, C. Duhr, B. Fuks, D. Grellscheid, O. Mattelaer and T. Reiter, UFO — the Universal FeynRules Output, Comput. Phys. Commun. 183 (2012) 1201 [arXiv:1108.2040] [INSPIRE].

  61. J. Alwall et al., The automated computation of tree-level and next-to-leading order differential cross sections and their matching to parton shower simulations, JHEP 07 (2014) 079 [arXiv:1405.0301] [INSPIRE].

  62. P. Artoisenet, R. Frederix, O. Mattelaer and R. Rietkerk, Automatic spin-entangled decays of heavy resonances in Monte Carlo simulations, JHEP 03 (2013) 015 [arXiv:1212.3460] [INSPIRE].

  63. P. Ilten, Y. Soreq, M. Williams and W. Xue, Serendipity in dark photon searches, JHEP 06 (2018) 004 [arXiv:1801.04847] [INSPIRE].

  64. J. Liu, N. Weiner and W. Xue, Signals of a light dark force in the galactic center, JHEP 08 (2015) 050 [arXiv:1412.1485] [INSPIRE].

  65. BaBar collaboration, Search for long-lived particles in e+ e− collisions, Phys. Rev. Lett. 114 (2015) 171801 [arXiv:1502.02580] [INSPIRE].

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited

Author information

Authors and Affiliations

  1. Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Clarendon Laboratory, Parks Road, Oxford, OX1 3PU, U.K.

    Michael Duerr

  2. DESY, Notkestrasse 85, D-22607, Hamburg, Germany

    Torben Ferber & Kai Schmidt-Hoberg

  3. Department of Physics and Astronomy, University of British Columbia, Agronomy Road, Vancouver, BC, V6T 1Z1, Canada

    Christopher Hearty

  4. Institute for Theoretical Particle Physics and Cosmology (TTK), RWTH Aachen University, D-52056, Aachen, Germany

    Felix Kahlhoefer & Patrick Tunney

  5. Institute of Particle Physics, Victoria, BC, Canada

    Christopher Hearty

Authors
  1. Michael Duerr
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Torben Ferber
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Christopher Hearty
    View author publications

    You can also search for this author in PubMed Google Scholar

  4. Felix Kahlhoefer
    View author publications

    You can also search for this author in PubMed Google Scholar

  5. Kai Schmidt-Hoberg
    View author publications

    You can also search for this author in PubMed Google Scholar

  6. Patrick Tunney
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Michael Duerr.

Additional information

ArXiv ePrint: 1911.03176

Electronic supplementary material

ESM 1

(ZIP 93 kb)

Rights and permissions

Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Duerr, M., Ferber, T., Hearty, C. et al. Invisible and displaced dark matter signatures at Belle II. J. High Energ. Phys. 2020, 39 (2020). https://doi.org/10.1007/JHEP02(2020)039

Download citation

  • Received: 13 December 2019

  • Revised: 13 January 2020

  • Accepted: 14 January 2020

  • Published: 05 February 2020

  • DOI: https://doi.org/10.1007/JHEP02(2020)039

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Beyond Standard Model
  • Cosmology of Theories beyond the SM
Download PDF

Working on a manuscript?

Avoid the most common mistakes and prepare your manuscript for journal editors.

Learn more

Advertisement

Over 10 million scientific documents at your fingertips

Switch Edition
  • Academic Edition
  • Corporate Edition
  • Home
  • Impressum
  • Legal information
  • Privacy statement
  • California Privacy Statement
  • How we use cookies
  • Manage cookies/Do not sell my data
  • Accessibility
  • FAQ
  • Contact us
  • Affiliate program

Not affiliated

Springer Nature

© 2023 Springer Nature Switzerland AG. Part of Springer Nature.