Skip to main content

Advertisement

SpringerLink
Go to cart
  1. Home
  2. Journal of High Energy Physics
  3. Article
Constraints on flavor-diagonal non-standard neutrino interactions from Borexino Phase-II
Download PDF
Your article has downloaded

Similar articles being viewed by others

Slider with three articles shown per slide. Use the Previous and Next buttons to navigate the slides or the slide controller buttons at the end to navigate through each slide.

Sensitivity to neutrinos from the solar CNO cycle in Borexino

26 November 2020

M. Agostini, K. Altenmüller, … BOREXINO Collaboration

Constraining new physics with Borexino Phase-II spectral data

22 July 2022

Pilar Coloma, M. C. Gonzalez-Garcia, … Salvador Urrea

On resolving the dark LMA solution at neutrino oscillation experiments

21 December 2020

Sandhya Choubey & Dipyaman Pramanik

The flavor composition of astrophysical neutrinos after 8 years of IceCube: an indication of neutron decay scenario?

13 June 2019

Andrea Palladino

Testing large non-standard neutrino interactions with arbitrary mediator mass after COHERENT data

05 July 2018

Peter B. Denton, Yasaman Farzan & Ian M. Shoemaker

Probing non-standard neutrino interactions with supernova neutrinos at Hyper-K

29 January 2020

Minjie Lei, Noah Steinberg & James D. Wells

Exploring the new physics phases in 3+1 scenario in neutrino oscillation experiments

23 September 2021

Nishat Fiza, Mehedi Masud & Manimala Mitra

Addendum to: Updated constraints on non-standard interactions from global analysis of oscillation data

23 December 2020

Ivan Esteban, M. C. Gonzalez-Garcia, … Jordi Salvado

Impact of the Dresden-II and COHERENT neutrino scattering data on neutrino electromagnetic properties and electroweak physics

20 September 2022

M. Atzori Corona, M. Cadeddu, … Y. Y. Zhang

Download PDF
  • Regular Article - Theoretical Physics
  • Open Access
  • Published: 05 February 2020

Constraints on flavor-diagonal non-standard neutrino interactions from Borexino Phase-II

  • The Borexino collaboration,
  • S. K. Agarwalla  ORCID: orcid.org/0000-0002-9714-88661,2,3,
  • M. Agostini4,
  • K. Altenmüller4,
  • S. Appel4,
  • V. Atroshchenko5,
  • Z. Bagdasarian6,
  • D. Basilico7,
  • G. Bellini7,
  • J. Benziger8,
  • D. Bick9,
  • G. Bonfini10,
  • D. Bravo7 nAff33,
  • B. Caccianiga7,
  • F. Calaprice11,
  • A. Caminata12,
  • L. Cappelli10,
  • P. Cavalcante13 nAff10,
  • F. Cavanna12,
  • A. Chepurnov14,
  • K. Choi15,
  • D. D’Angelo7,
  • S. Davini12,
  • A. Derbin16,
  • A. Di Giacinto10,
  • V. Di Marcello10,
  • X. F. Ding17,10,
  • A. Di Ludovico11,
  • L. Di Noto12,
  • I. Drachnev16,
  • K. Fomenko18,
  • A. Formozov7,14,18,
  • D. Franco19,
  • F. Gabriele10,
  • C. Galbiati11,
  • M. Gschwender20,
  • C. Ghiano10,
  • M. Giammarchi7,
  • A. Goretti11,
  • M. Gromov14,18,
  • D. Guffanti26,
  • C. Hagner9,
  • E. Hungerford21,
  • Aldo Ianni10,
  • Andrea Ianni11,
  • A. Jany22,
  • D. Jeschke4,
  • S. Kumaran6,23,
  • V. Kobychev24,
  • G. Korga21,32,
  • T. Lachenmaier20,
  • M. Laubenstein10,
  • E. Litvinovich5,25,
  • P. Lombardi7,
  • L. Ludhova6,23,
  • G. Lukyanchenko5,
  • L. Lukyanchenko5,
  • I. Machulin5,25,
  • G. Manuzio12,
  • S. Marcocci17 nAff34,
  • J. Maricic15,
  • J. Martyn26,
  • E. Meroni7,
  • M. Meyer27,
  • L. Miramonti7,
  • M. Misiaszek22,
  • V. Muratova16,
  • B. Neumair4,
  • M. Nieslony26,
  • L. Oberauer4,
  • V. Orekhov5,26,
  • F. Ortica28,
  • M. Pallavicini12,
  • L. Papp4,
  • Ö. Penek6,23,
  • L. Pietrofaccia11,
  • N. Pilipenko16,
  • A. Pocar29,
  • G. Raikov5,
  • G. Ranucci7,
  • A. Razeto10,
  • A. Re7,
  • M. Redchuk6,23,
  • A. Romani28,
  • N. Rossi10 nAff35,
  • S. Rottenanger20,
  • S. Schönert4,
  • D. Semenov16,
  • M. Skorokhvatov5,25,
  • O. Smirnov18,
  • A. Sotnikov18,
  • C. Sun  ORCID: orcid.org/0000-0002-5145-153630,31,
  • Y. Suvorov5,10 nAff36,
  • T. Takeuchi  ORCID: orcid.org/0000-0002-3594-514913,
  • R. Tartaglia10,
  • G. Testera12,
  • J. Thurn27,
  • E. Unzhakov16,
  • A. Vishneva18,
  • R. B. Vogelaar13,
  • F. von Feilitzsch4,
  • M. Wojcik22,
  • M. Wurm26,
  • O. Zaimidoroga18,
  • S. Zavatarelli12,
  • K. Zuber27 &
  • …
  • G. Zuzel22 

Journal of High Energy Physics volume 2020, Article number: 38 (2020) Cite this article

  • 615 Accesses

  • 17 Citations

  • Metrics details

A preprint version of the article is available at arXiv.

Abstract

The Borexino detector measures solar neutrino fluxes via neutrino-electron elastic scattering. Observed spectra are determined by the solar-νe survival probability Pee(E), and the chiral couplings of the neutrino and electron. Some theories of physics beyond the Standard Model postulate the existence of Non-Standard Interactions (NSI’s) which modify the chiral couplings and Pee(E). In this paper, we search for such NSI’s, in particular, flavor-diagonal neutral current interactions that modify the νee and ντe couplings using Borexino Phase II data. Standard Solar Model predictions of the solar neutrino fluxes for both high- and low-metallicity assumptions are considered. No indication of new physics is found at the level of sensitivity of the detector and constraints on the parameters of the NSI’s are placed. In addition, with the same dataset the value of sin2 θW is obtained with a precision comparable to that achieved in reactor antineutrino experiments

.

Download to read the full article text

Working on a manuscript?

Avoid the common mistakes

References

  1. SNO collaboration, Direct evidence for neutrino flavor transformation from neutral current interactions in the Sudbury Neutrino Observatory, Phys. Rev. Lett. 89 (2002) 011301 [nucl-ex/0204008] [INSPIRE].

  2. Super-Kamiokande collaboration, Solar Neutrino Measurements in Super-Kamiokande-IV, Phys. Rev. D 94 (2016) 052010 [arXiv:1606.07538] [INSPIRE].

  3. KamLAND collaboration, First results from KamLAND: Evidence for reactor anti-neutrino disappearance, Phys. Rev. Lett. 90 (2003) 021802 [hep-ex/0212021] [INSPIRE].

  4. KamLAND collaboration, Measurement of neutrino oscillation with KamLAND: Evidence of spectral distortion, Phys. Rev. Lett. 94 (2005) 081801 [hep-ex/0406035] [INSPIRE].

  5. KamLAND collaboration, Precision Measurement of Neutrino Oscillation Parameters with KamLAND, Phys. Rev. Lett. 100 (2008) 221803 [arXiv:0801.4589] [INSPIRE].

  6. L. Wolfenstein, Neutrino Oscillations in Matter, Phys. Rev. D 17 (1978) 2369 [INSPIRE].

    ADS  Google Scholar 

  7. L. Wolfenstein, Neutrino Oscillations and Stellar Collapse, Phys. Rev. D 20 (1979) 2634 [INSPIRE].

    ADS  Google Scholar 

  8. S.P. Mikheyev and A.Yu. Smirnov, Resonance Amplification of Oscillations in Matter and Spectroscopy of Solar Neutrinos, Sov. J. Nucl. Phys. 42 (1985) 913 [INSPIRE].

    Google Scholar 

  9. S.P. Mikheev and A.Yu. Smirnov, Resonant amplification of neutrino oscillations in matter and solar neutrino spectroscopy, Nuovo Cim. C 9 (1986) 17 [INSPIRE].

    Article  ADS  Google Scholar 

  10. M. Maltoni and A.Yu. Smirnov, Solar neutrinos and neutrino physics, Eur. Phys. J. A 52 (2016) 87 [arXiv:1507.05287] [INSPIRE].

    Article  ADS  Google Scholar 

  11. Borexino-SOX collaboration, Solar neutrino detectors as sterile neutrino hunters, J. Phys. Conf. Ser. 888 (2017) 012018 [INSPIRE].

  12. F. Capozzi, I.M. Shoemaker and L. Vecchi, Solar Neutrinos as a Probe of Dark Matter-Neutrino Interactions, JCAP 07 (2017) 021 [arXiv:1702.08464] [INSPIRE].

    Article  ADS  Google Scholar 

  13. R. Essig, M. Sholapurkar and T.-T. Yu, Solar Neutrinos as a Signal and Background in Direct-Detection Experiments Searching for Sub-GeV Dark Matter With Electron Recoils, Phys. Rev. D 97 (2018) 095029 [arXiv:1801.10159] [INSPIRE].

  14. Borexino collaboration, The Borexino detector at the Laboratori Nazionali del Gran Sasso, Nucl. Instrum. Meth. A 600 (2009) 568 [arXiv:0806.2400] [INSPIRE].

  15. Borexino collaboration, Final results of Borexino Phase-I on low energy solar neutrino spectroscopy, Phys. Rev. D 89 (2014) 112007 [arXiv:1308.0443] [INSPIRE].

  16. Borexino collaboration, Neutrinos from the primary proton-proton fusion process in the Sun, Nature 512 (2014) 383 [INSPIRE].

  17. Borexino collaboration, First Simultaneous Precision Spectroscopy of pp, 7Be and pep Solar Neutrinos with Borexino Phase-II, Phys. Rev. D 100 (2019) 082004 [arXiv:1707.09279] [INSPIRE].

  18. Borexino collaboration, Comprehensive measurement of pp-chain solar neutrinos, Nature 562 (2018) 505 [INSPIRE].

  19. CHARM-II collaboration, Precision measurement of electroweak parameters from the scattering of muon-neutrinos on electrons, Phys. Lett. B 335 (1994) 246 [INSPIRE].

  20. Z.G. Berezhiani and A. Rossi, Vacuum oscillation solution to the solar neutrino problem in standard and nonstandard pictures, Phys. Rev. D 51 (1995) 5229 [hep-ph/9409464] [INSPIRE].

  21. Z. Berezhiani, R.S. Raghavan and A. Rossi, Probing nonstandard couplings of neutrinos at the Borexino detector, Nucl. Phys. B 638 (2002) 62 [hep-ph/0111138] [INSPIRE].

  22. Borexino collaboration, Direct Measurement of the Be-7 Solar Neutrino Flux with 192 Days of Borexino Data, Phys. Rev. Lett. 101 (2008) 091302 [arXiv:0805.3843] [INSPIRE].

  23. S.K. Agarwalla, F. Lombardi and T. Takeuchi, Constraining Non-Standard Interactions of the Neutrino with Borexino, JHEP 12 (2012) 079 [arXiv:1207.3492] [INSPIRE].

    Article  ADS  Google Scholar 

  24. J.N. Bahcall, Neutrino-Electron Scattering and Solar Neutrino Experiments, Rev. Mod. Phys. 59 (1987) 505 [INSPIRE].

    Article  ADS  Google Scholar 

  25. J.N. Bahcall and R.K. Ulrich, Solar Models, Neutrino Experiments and Helioseismology, Rev. Mod. Phys. 60 (1988) 297 [INSPIRE].

    Article  ADS  Google Scholar 

  26. J.N. Bahcall, M.H. Pinsonneault and S. Basu, Solar models: Current epoch and time dependences, neutrinos and helioseismological properties, Astrophys. J. 555 (2001) 990 [astro-ph/0010346] [INSPIRE].

  27. N. Vinyoles et al., A new Generation of Standard Solar Models, Astrophys. J. 835 (2017) 202 [arXiv:1611.09867] [INSPIRE].

    Article  ADS  Google Scholar 

  28. E. Vitagliano, J. Redondo and G. Raffelt, Solar neutrino flux at keV energies, JCAP 12 (2017) 010 x[arXiv:1611.09867] [INSPIRE].

  29. M. Fierz, Zur fermi sohen theorie des β-zerfalls, Z. Phys. 104 (1937) 553.

    Article  ADS  Google Scholar 

  30. J.F. Nieves and P.B. Pal, Generalized Fierz identities, Am. J. Phys. 72 (2004) 1100 [hep-ph/0306087] [INSPIRE].

  31. J. Erler and A. Freitas, Electroweak Model and Constraints on New Physics, http://pdg.lbl.gov/2019/reviews/rpp2018-rev-standard-model.pdf (2018).

  32. G. ’t Hooft, Predictions for neutrino-electron cross-sections in Weinberg’s model of weak interactions, Phys. Lett. 37B (1971) 195 [INSPIRE].

  33. M. Ram, Inner Bremsstrahlung in Low-Energy Electron-Neutrino (Antineutrino) Scattering, Phys. Rev. 155 (1967) 1539 [INSPIRE].

    Article  ADS  Google Scholar 

  34. W.J. Marciano and A. Sirlin, Radiative Corrections to Neutrino Induced Neutral Current Phenomena in the SU(2)L × U(1) Theory, Phys. Rev. D 22 (1980) 2695 [Erratum ibid. D 31 (1985) 213] [INSPIRE].

  35. S. Sarantakos, A. Sirlin and W.J. Marciano, Radiative Corrections to Neutrino-Lepton Scattering in the SU(2)L × U(1) Theory, Nucl. Phys. B 217 (1983) 84 [INSPIRE].

    Article  ADS  Google Scholar 

  36. J.F. Wheater and C.H. Llewellyn Smith, Electroweak Radiative Corrections to Neutrino and Electron Scattering and the Value of sin2 θW, Nucl. Phys. B 208 (1982) 27 [Erratum ibid. B 226 (1983) 547] [INSPIRE].

  37. J.N. Bahcall, M. Kamionkowski and A. Sirlin, Solar neutrinos: Radiative corrections in neutrino-electron scattering experiments, Phys. Rev. D 51 (1995) 6146 [astro-ph/9502003] [INSPIRE].

  38. M. Passera, QED corrections to neutrino electron scattering, Phys. Rev. D 64 (2001) 113002 [hep-ph/0011190] [INSPIRE].

  39. Particle Data Group collaboration, Review of Particle Physics, Chin. Phys. C 40 (2016) 100001 [INSPIRE].

  40. Particle Data Group collaboration, Review of Particle Physics, Phys. Rev. D 98 (2018) 030001 [INSPIRE].

  41. S. Antusch, J.P. Baumann and E. Fernandez-Martinez, Non-Standard Neutrino Interactions with Matter from Physics Beyond the Standard Model, Nucl. Phys. B 810 (2009) 369 [arXiv:0807.1003] [INSPIRE].

    Article  ADS  Google Scholar 

  42. M.B. Gavela, D. Hernandez, T. Ota and W. Winter, Large gauge invariant non-standard neutrino interactions, Phys. Rev. D 79 (2009) 013007 [arXiv:0809.3451] [INSPIRE].

  43. M. Malinsky, T. Ohlsson and H. Zhang, Non-Standard Neutrino Interactions from a Triplet Seesaw Model, Phys. Rev. D 79 (2009) 011301 [arXiv:0811.3346] [INSPIRE].

  44. T. Ohlsson, T. Schwetz and H. Zhang, Non-standard neutrino interactions in the Zee-Babu model, Phys. Lett. B 681 (2009) 269 [arXiv:0909.0455] [INSPIRE].

    Article  ADS  Google Scholar 

  45. M. Medina and P.C. de Holanda, Non-Standard Neutrinos Interactions in A 331 Model with Minimum Higgs Sector, Adv. High Energy Phys. 2012 (2012) 763829 [arXiv:1108.5228] [INSPIRE].

    Article  Google Scholar 

  46. Y. Farzan, A model for large non-standard interactions of neutrinos leading to the LMA-Dark solution, Phys. Lett. B 748 (2015) 311 [arXiv:1505.06906] [INSPIRE].

    Article  ADS  Google Scholar 

  47. Y. Farzan and I.M. Shoemaker, Lepton Flavor Violating Non-Standard Interactions via Light Mediators, JHEP 07 (2016) 033 [arXiv:1512.09147] [INSPIRE].

    Article  ADS  Google Scholar 

  48. Y. Farzan and J. Heeck, Neutrinophilic nonstandard interactions, Phys. Rev. D 94 (2016) 053010 [arXiv:1607.07616] [INSPIRE].

  49. M. Blennow, P. Coloma, E. Fernandez-Martinez, J. Hernandez-Garcia and J. Lopez-Pavon, Non-Unitarity, sterile neutrinos and Non-Standard neutrino Interactions, JHEP 04 (2017) 153 [arXiv:1609.08637] [INSPIRE].

    Article  ADS  Google Scholar 

  50. B. Sevda et al., Constraints on nonstandard intermediate boson exchange models from neutrino-electron scattering, Phys. Rev. D 96 (2017) 035017 [arXiv:1702.02353] [INSPIRE].

  51. M. Pospelov and Y.-D. Tsai, Light scalars and dark photons in Borexino and LSND experiments, Phys. Lett. B 785 (2018) 288 [arXiv:1706.00424] [INSPIRE].

    Article  ADS  Google Scholar 

  52. Z. Berezhiani and A. Rossi, Limits on the nonstandard interactions of neutrinos from e+e− colliders, Phys. Lett. B 535 (2002) 207 [hep-ph/0111137] [INSPIRE].

  53. T. Ohlsson, Status of non-standard neutrino interactions, Rept. Prog. Phys. 76 (2013) 044201 [arXiv:1209.2710] [INSPIRE].

  54. S. Davidson, C. Pẽna-Garay, N. Rius and A. Santamaria, Present and future bounds on nonstandard neutrino interactions, JHEP 03 (2003) 011 [hep-ph/0302093] [INSPIRE].

  55. J. Barranco, O.G. Miranda, C.A. Moura and J.W.F. Valle, Constraining non-standard neutrino-electron interactions, Phys. Rev. D 77 (2008) 093014 [arXiv:0711.0698] [INSPIRE].

  56. Y. Farzan and M. Tortola, Neutrino oscillations and Non-Standard Interactions, Front. Phys. 6 (2018) 10 [arXiv:1710.09360] [INSPIRE].

    Article  Google Scholar 

  57. M.M. Guzzo, A. Masiero and S.T. Petcov, On the MSW effect with massless neutrinos and no mixing in the vacuum, Phys. Lett. B 260 (1991) 154 [INSPIRE].

    Article  ADS  Google Scholar 

  58. M.M. Guzzo and S.T. Petcov, On the matter enhanced transitions of solar neutrinos in the absence of neutrino mixing in vacuum, Phys. Lett. B 271 (1991) 172 [INSPIRE].

    Article  ADS  Google Scholar 

  59. J.W.F. Valle, Resonant Oscillations of Massless Neutrinos in Matter, Phys. Lett. B 199 (1987) 432 [INSPIRE].

    Article  ADS  Google Scholar 

  60. E. Roulet, MSW effect with flavor changing neutrino interactions, Phys. Rev. D 44 (1991) R935 [INSPIRE].

    ADS  Google Scholar 

  61. V.D. Barger, R.J.N. Phillips and K. Whisnant, Solar neutrino solutions with matter enhanced flavor changing neutral current scattering, Phys. Rev. D 44 (1991) 1629 [INSPIRE].

    ADS  Google Scholar 

  62. M. Guzzo, P.C. de Holanda, M. Maltoni, H. Nunokawa, M.A. Tortola and J.W.F. Valle, Status of a hybrid three neutrino interpretation of neutrino data, Nucl. Phys. B 629 (2002) 479 [hep-ph/0112310] [INSPIRE].

  63. A. Bolanos, O.G. Miranda, A. Palazzo, M.A. Tortola and J.W.F. Valle, Probing non-standard neutrino-electron interactions with solar and reactor neutrinos, Phys. Rev. D 79 (2009) 113012 [arXiv:0812.4417] [INSPIRE].

    ADS  Google Scholar 

  64. A. Friedland, C. Lunardini and C. Pena-Garay, Solar neutrinos as probes of neutrino matter interactions, Phys. Lett. B 594 (2004) 347 [hep-ph/0402266] [INSPIRE].

  65. I. Esteban, M.C. Gonzalez-Garcia, M. Maltoni, I. Martinez-Soler and T. Schwetz, Updated fit to three neutrino mixing: exploring the accelerator-reactor complementarity, JHEP 01 (2017) 087 [arXiv:1611.01514] [INSPIRE].

    Article  ADS  Google Scholar 

  66. A.M. Dziewonski and D.L. Anderson, Preliminary reference Earth model, Phys. Earth Planet. In. 25 (1981) 297.

    Article  ADS  Google Scholar 

  67. A. de Gouvêa, A. Friedland and H. Murayama, Earth matter effect in Be-7 solar neutrino experiments, JHEP 03 (2001) 009 [hep-ph/9910286] [INSPIRE].

  68. J.N. Bahcall, M.C. Gonzalez-Garcia and C. Pena-Garay, Robust signatures of solar neutrino oscillation solutions, JHEP 04 (2002) 007 [hep-ph/0111150] [INSPIRE].

  69. Super-Kamiokande collaboration, Constraints on neutrino oscillation parameters from the measurement of day night solar neutrino fluxes at Super-Kamiokande, Phys. Rev. Lett. 82 (1999) 1810 [hep-ex/9812009] [INSPIRE].

  70. Super-Kamiokande collaboration, Precise measurement of the solar neutrino day/night and seasonal variation in Super-Kamiokande-1, Phys. Rev. D 69 (2004) 011104 [hep-ex/0309011] [INSPIRE].

  71. SNO collaboration, Measurement of day and night neutrino energy spectra at SNO and constraints on neutrino mixing parameters, Phys. Rev. Lett. 89 (2002) 011302 [nucl-ex/0204009] [INSPIRE].

  72. SNO collaboration, Electron energy spectra, fluxes and day-night asymmetries of B-8 solar neutrinos from measurements with NaCl dissolved in the heavy-water detector at the Sudbury Neutrino Observatory, Phys. Rev. C 72 (2005) 055502 [nucl-ex/0502021] [INSPIRE].

  73. S.S. Aleshin, O.G. Kharlanov and A.E. Lobanov, Analytical treatment of long-term observations of the day-night asymmetry for solar neutrinos, Phys. Rev. D 87 (2013) 045025 [arXiv:1302.7201] [INSPIRE].

  74. A.N. Ioannisian, A.Yu. Smirnov and D. Wyler, Oscillations of the 7Be solar neutrinos inside the Earth, Phys. Rev. D 92 (2015) 013014 [arXiv:1503.02183] [INSPIRE].

  75. Borexino collaboration, Absence of day-night asymmetry of 862 keV 7Be solar neutrino rate in Borexino and MSW oscillation parameters, Phys. Lett. B 707 (2012) 22 [arXiv:1104.2150] [INSPIRE].

  76. Borexino collaboration, The Monte Carlo simulation of the Borexino detector, Astropart. Phys. 97 (2018) 136 [arXiv:1704.02291] [INSPIRE].

  77. Borexino collaboration, Borexino calibrations: Hardware, Methods and Results, 2012 JINST 7 P10018 [arXiv:1207.4816] [INSPIRE].

  78. F. Capozzi, E. Lisi, A. Marrone, D. Montanino and A. Palazzo, Neutrino masses and mixings: Status of known and unknown 3ν parameters, Nucl. Phys. B 908 (2016) 218 [arXiv:1601.07777] [INSPIRE].

    Article  ADS  Google Scholar 

  79. LSND collaboration, Measurement of electron-neutrino electron elastic scattering, Phys. Rev. D 63 (2001) 112001 [hep-ex/0101039] [INSPIRE].

  80. TEXONO collaboration, Constraints on Non-Standard Neutrino Interactions and Unparticle Physics with Neutrino-Electron Scattering at the Kuo-Sheng Nuclear Power Reactor, Phys. Rev. D 82 (2010) 033004 [arXiv:1006.1947] [INSPIRE].

  81. Borexino collaboration, First real time detection of 7Be solar neutrinos by Borexino, Phys. Lett. B 658 (2008) 101 [arXiv:0708.2251] [INSPIRE].

  82. Borexino collaboration, Measurement of the solar 8B neutrino rate with a liquid scintillator target and 3 MeV energy threshold in the Borexino detector, Phys. Rev. D 82 (2010) 033006 [arXiv:0808.2868] [INSPIRE].

  83. S.K. Agarwalla, Y. Kao and T. Takeuchi, Analytical approximation of the neutrino oscillation matter effects at large θ13, JHEP 04 (2014) 047 [arXiv:1302.6773] [INSPIRE].

    Article  ADS  Google Scholar 

  84. S.K. Agarwalla, Y. Kao, D. Saha and T. Takeuchi, Running of Oscillation Parameters in Matter with Flavor-Diagonal Non-Standard Interactions of the Neutrino, JHEP 11 (2015) 035 [arXiv:1506.08464] [INSPIRE].

    Article  ADS  Google Scholar 

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited

Author information

Author notes
  1. P. Cavalcante

    Present address: INFN Laboratori Nazionali del Gran Sasso, 67010, Assergi (AQ), Italy

  2. D. Bravo

    Present address: Universidad Autónoma de Madrid, Ciudad Universitaria de Cantoblanco, 28049, Madrid, Spain

  3. S. Marcocci

    Present address: Fermilab National Accelerato Laboratory (FNAL), Batavia, IL, 60510, U.S.A.

  4. N. Rossi

    Present address: Dipartimento di Fisica, Sapienza Università di Roma e INFN, 00185, Roma, Italy

  5. Y. Suvorov

    Present address: Dipartimento di Fisica, Università degli Studi Federico II e INFN, 80126, Napoli, Italy

Authors and Affiliations

  1. Institute of Physics, Sachivalaya Marg, Sainik School Post, Bhubaneswar, 751005, India

    S. K. Agarwalla

  2. Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, 400085, India

    S. K. Agarwalla

  3. International Centre for Theoretical Physics, Strada Costiera 11, 34151, Trieste, Italy

    S. K. Agarwalla

  4. Physik-Department and Excellence Cluster Universe, Technische Universität München, 85748, Garching, Germany

    M. Agostini, K. Altenmüller, S. Appel, D. Jeschke, B. Neumair, L. Oberauer, L. Papp, S. Schönert & F. von Feilitzsch

  5. National Research Centre Kurchatov Institute, 123182, Moscow, Russia

    V. Atroshchenko, E. Litvinovich, G. Lukyanchenko, L. Lukyanchenko, I. Machulin, V. Orekhov, G. Raikov, M. Skorokhvatov & Y. Suvorov

  6. Institut für Kernphysik, Forschungszentrum Jülich, 52425, Jülich, Germany

    Z. Bagdasarian, S. Kumaran, L. Ludhova, Ö. Penek & M. Redchuk

  7. Dipartimento di Fisica, Università degli Studi e INFN, 20133, Milano, Italy

    D. Basilico, G. Bellini, D. Bravo, B. Caccianiga, D. D’Angelo, A. Formozov, M. Giammarchi, P. Lombardi, E. Meroni, L. Miramonti, G. Ranucci & A. Re

  8. Chemical Engineering Department, Princeton University, Princeton, NJ, 08544, U.S.A.

    J. Benziger

  9. Institut für Experimentalphysik, Universität Hamburg, 22761, Hamburg, Germany

    D. Bick & C. Hagner

  10. INFN Laboratori Nazionali del Gran Sasso, 67010, Assergi (AQ), Italy

    G. Bonfini, L. Cappelli, A. Di Giacinto, V. Di Marcello, X. F. Ding, F. Gabriele, C. Ghiano, Aldo Ianni, M. Laubenstein, A. Razeto, N. Rossi, Y. Suvorov & R. Tartaglia

  11. Physics Department, Princeton University, Princeton, NJ, 08544, U.S.A.

    F. Calaprice, A. Di Ludovico, C. Galbiati, A. Goretti, Andrea Ianni & L. Pietrofaccia

  12. Dipartimento di Fisica, Università degli Studi e INFN, 16146, Genova, Italy

    A. Caminata, F. Cavanna, S. Davini, L. Di Noto, G. Manuzio, M. Pallavicini, G. Testera & S. Zavatarelli

  13. Physics Department, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, U.S.A.

    P. Cavalcante, T. Takeuchi & R. B. Vogelaar

  14. Lomonosov Moscow State University Skobeltsyn Institute of Nuclear Physics, 119234, Moscow, Russia

    A. Chepurnov, A. Formozov & M. Gromov

  15. Department of Physics and Astronomy, University of Hawaii, Honolulu, HI, 96822, U.S.A.

    K. Choi & J. Maricic

  16. St. Petersburg Nuclear Physics Institute NRC Kurchatov Institute, 188350, Gatchina, Russia

    A. Derbin, I. Drachnev, V. Muratova, N. Pilipenko, D. Semenov & E. Unzhakov

  17. Gran Sasso Science Institute, 67100, L’Aquila, Italy

    X. F. Ding & S. Marcocci

  18. Joint Institute for Nuclear Research, 141980, Dubna, Russia

    K. Fomenko, A. Formozov, M. Gromov, O. Smirnov, A. Sotnikov, A. Vishneva & O. Zaimidoroga

  19. AstroParticule et Cosmologie, Université Paris Diderot, CNRS/IN2P3, CEA/IRFU, Observatoire de Paris, Sorbonne Paris Cité, 75205, Paris Cedex 13, France

    D. Franco

  20. Kepler Center for Astro and Particle Physics, Universität Tübingen, 72076, Tübingen, Germany

    M. Gschwender, T. Lachenmaier & S. Rottenanger

  21. Department of Physics, University of Houston, Houston, TX, 77204, U.S.A.

    E. Hungerford & G. Korga

  22. M. Smoluchowski Institute of Physics, Jagiellonian University, 30348, Krakow, Poland

    A. Jany, M. Misiaszek, M. Wojcik & G. Zuzel

  23. RWTH Aachen University, 52062, Aachen, Germany

    S. Kumaran, L. Ludhova, Ö. Penek & M. Redchuk

  24. Institute for Nuclear Research of NAS Ukraine, Kiev, 03028, Ukraine

    V. Kobychev

  25. National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), 115409, Moscow, Russia

    E. Litvinovich, I. Machulin & M. Skorokhvatov

  26. Institute of Physics and Excellence Cluster PRISMA+, Johannes Gutenberg-Universität Mainz, 55099, Mainz, Germany

    D. Guffanti, J. Martyn, M. Nieslony, V. Orekhov & M. Wurm

  27. Department of Physics, Technische Universität Dresden, 01062, Dresden, Germany

    M. Meyer, J. Thurn & K. Zuber

  28. Dipartimento di Chimica, Biologia e Biotecnologie, Università degli Studi e INFN, 06123, Perugia, Italy

    F. Ortica & A. Romani

  29. Amherst Center for Fundamental Interactions and Physics Department, University of Massachusetts, Amherst, MA, 01003, U.S.A.

    A. Pocar

  30. CAS Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing, 100190, P.R. China

    C. Sun

  31. Department of Physics, Brown University, Providence, RI, 02912, U.S.A.

    C. Sun

  32. MTA-Wigner Research Centre for Physics, Department of Space Physics and Space Technology, Konkoly-Thege Miklós út 29-33, Budapest, 1121, Hungary

    G. Korga

Authors
  1. S. K. Agarwalla
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. M. Agostini
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. K. Altenmüller
    View author publications

    You can also search for this author in PubMed Google Scholar

  4. S. Appel
    View author publications

    You can also search for this author in PubMed Google Scholar

  5. V. Atroshchenko
    View author publications

    You can also search for this author in PubMed Google Scholar

  6. Z. Bagdasarian
    View author publications

    You can also search for this author in PubMed Google Scholar

  7. D. Basilico
    View author publications

    You can also search for this author in PubMed Google Scholar

  8. G. Bellini
    View author publications

    You can also search for this author in PubMed Google Scholar

  9. J. Benziger
    View author publications

    You can also search for this author in PubMed Google Scholar

  10. D. Bick
    View author publications

    You can also search for this author in PubMed Google Scholar

  11. G. Bonfini
    View author publications

    You can also search for this author in PubMed Google Scholar

  12. D. Bravo
    View author publications

    You can also search for this author in PubMed Google Scholar

  13. B. Caccianiga
    View author publications

    You can also search for this author in PubMed Google Scholar

  14. F. Calaprice
    View author publications

    You can also search for this author in PubMed Google Scholar

  15. A. Caminata
    View author publications

    You can also search for this author in PubMed Google Scholar

  16. L. Cappelli
    View author publications

    You can also search for this author in PubMed Google Scholar

  17. P. Cavalcante
    View author publications

    You can also search for this author in PubMed Google Scholar

  18. F. Cavanna
    View author publications

    You can also search for this author in PubMed Google Scholar

  19. A. Chepurnov
    View author publications

    You can also search for this author in PubMed Google Scholar

  20. K. Choi
    View author publications

    You can also search for this author in PubMed Google Scholar

  21. D. D’Angelo
    View author publications

    You can also search for this author in PubMed Google Scholar

  22. S. Davini
    View author publications

    You can also search for this author in PubMed Google Scholar

  23. A. Derbin
    View author publications

    You can also search for this author in PubMed Google Scholar

  24. A. Di Giacinto
    View author publications

    You can also search for this author in PubMed Google Scholar

  25. V. Di Marcello
    View author publications

    You can also search for this author in PubMed Google Scholar

  26. X. F. Ding
    View author publications

    You can also search for this author in PubMed Google Scholar

  27. A. Di Ludovico
    View author publications

    You can also search for this author in PubMed Google Scholar

  28. L. Di Noto
    View author publications

    You can also search for this author in PubMed Google Scholar

  29. I. Drachnev
    View author publications

    You can also search for this author in PubMed Google Scholar

  30. K. Fomenko
    View author publications

    You can also search for this author in PubMed Google Scholar

  31. A. Formozov
    View author publications

    You can also search for this author in PubMed Google Scholar

  32. D. Franco
    View author publications

    You can also search for this author in PubMed Google Scholar

  33. F. Gabriele
    View author publications

    You can also search for this author in PubMed Google Scholar

  34. C. Galbiati
    View author publications

    You can also search for this author in PubMed Google Scholar

  35. M. Gschwender
    View author publications

    You can also search for this author in PubMed Google Scholar

  36. C. Ghiano
    View author publications

    You can also search for this author in PubMed Google Scholar

  37. M. Giammarchi
    View author publications

    You can also search for this author in PubMed Google Scholar

  38. A. Goretti
    View author publications

    You can also search for this author in PubMed Google Scholar

  39. M. Gromov
    View author publications

    You can also search for this author in PubMed Google Scholar

  40. D. Guffanti
    View author publications

    You can also search for this author in PubMed Google Scholar

  41. C. Hagner
    View author publications

    You can also search for this author in PubMed Google Scholar

  42. E. Hungerford
    View author publications

    You can also search for this author in PubMed Google Scholar

  43. Aldo Ianni
    View author publications

    You can also search for this author in PubMed Google Scholar

  44. Andrea Ianni
    View author publications

    You can also search for this author in PubMed Google Scholar

  45. A. Jany
    View author publications

    You can also search for this author in PubMed Google Scholar

  46. D. Jeschke
    View author publications

    You can also search for this author in PubMed Google Scholar

  47. S. Kumaran
    View author publications

    You can also search for this author in PubMed Google Scholar

  48. V. Kobychev
    View author publications

    You can also search for this author in PubMed Google Scholar

  49. G. Korga
    View author publications

    You can also search for this author in PubMed Google Scholar

  50. T. Lachenmaier
    View author publications

    You can also search for this author in PubMed Google Scholar

  51. M. Laubenstein
    View author publications

    You can also search for this author in PubMed Google Scholar

  52. E. Litvinovich
    View author publications

    You can also search for this author in PubMed Google Scholar

  53. P. Lombardi
    View author publications

    You can also search for this author in PubMed Google Scholar

  54. L. Ludhova
    View author publications

    You can also search for this author in PubMed Google Scholar

  55. G. Lukyanchenko
    View author publications

    You can also search for this author in PubMed Google Scholar

  56. L. Lukyanchenko
    View author publications

    You can also search for this author in PubMed Google Scholar

  57. I. Machulin
    View author publications

    You can also search for this author in PubMed Google Scholar

  58. G. Manuzio
    View author publications

    You can also search for this author in PubMed Google Scholar

  59. S. Marcocci
    View author publications

    You can also search for this author in PubMed Google Scholar

  60. J. Maricic
    View author publications

    You can also search for this author in PubMed Google Scholar

  61. J. Martyn
    View author publications

    You can also search for this author in PubMed Google Scholar

  62. E. Meroni
    View author publications

    You can also search for this author in PubMed Google Scholar

  63. M. Meyer
    View author publications

    You can also search for this author in PubMed Google Scholar

  64. L. Miramonti
    View author publications

    You can also search for this author in PubMed Google Scholar

  65. M. Misiaszek
    View author publications

    You can also search for this author in PubMed Google Scholar

  66. V. Muratova
    View author publications

    You can also search for this author in PubMed Google Scholar

  67. B. Neumair
    View author publications

    You can also search for this author in PubMed Google Scholar

  68. M. Nieslony
    View author publications

    You can also search for this author in PubMed Google Scholar

  69. L. Oberauer
    View author publications

    You can also search for this author in PubMed Google Scholar

  70. V. Orekhov
    View author publications

    You can also search for this author in PubMed Google Scholar

  71. F. Ortica
    View author publications

    You can also search for this author in PubMed Google Scholar

  72. M. Pallavicini
    View author publications

    You can also search for this author in PubMed Google Scholar

  73. L. Papp
    View author publications

    You can also search for this author in PubMed Google Scholar

  74. Ö. Penek
    View author publications

    You can also search for this author in PubMed Google Scholar

  75. L. Pietrofaccia
    View author publications

    You can also search for this author in PubMed Google Scholar

  76. N. Pilipenko
    View author publications

    You can also search for this author in PubMed Google Scholar

  77. A. Pocar
    View author publications

    You can also search for this author in PubMed Google Scholar

  78. G. Raikov
    View author publications

    You can also search for this author in PubMed Google Scholar

  79. G. Ranucci
    View author publications

    You can also search for this author in PubMed Google Scholar

  80. A. Razeto
    View author publications

    You can also search for this author in PubMed Google Scholar

  81. A. Re
    View author publications

    You can also search for this author in PubMed Google Scholar

  82. M. Redchuk
    View author publications

    You can also search for this author in PubMed Google Scholar

  83. A. Romani
    View author publications

    You can also search for this author in PubMed Google Scholar

  84. N. Rossi
    View author publications

    You can also search for this author in PubMed Google Scholar

  85. S. Rottenanger
    View author publications

    You can also search for this author in PubMed Google Scholar

  86. S. Schönert
    View author publications

    You can also search for this author in PubMed Google Scholar

  87. D. Semenov
    View author publications

    You can also search for this author in PubMed Google Scholar

  88. M. Skorokhvatov
    View author publications

    You can also search for this author in PubMed Google Scholar

  89. O. Smirnov
    View author publications

    You can also search for this author in PubMed Google Scholar

  90. A. Sotnikov
    View author publications

    You can also search for this author in PubMed Google Scholar

  91. C. Sun
    View author publications

    You can also search for this author in PubMed Google Scholar

  92. Y. Suvorov
    View author publications

    You can also search for this author in PubMed Google Scholar

  93. T. Takeuchi
    View author publications

    You can also search for this author in PubMed Google Scholar

  94. R. Tartaglia
    View author publications

    You can also search for this author in PubMed Google Scholar

  95. G. Testera
    View author publications

    You can also search for this author in PubMed Google Scholar

  96. J. Thurn
    View author publications

    You can also search for this author in PubMed Google Scholar

  97. E. Unzhakov
    View author publications

    You can also search for this author in PubMed Google Scholar

  98. A. Vishneva
    View author publications

    You can also search for this author in PubMed Google Scholar

  99. R. B. Vogelaar
    View author publications

    You can also search for this author in PubMed Google Scholar

  100. F. von Feilitzsch
    View author publications

    You can also search for this author in PubMed Google Scholar

  101. M. Wojcik
    View author publications

    You can also search for this author in PubMed Google Scholar

  102. M. Wurm
    View author publications

    You can also search for this author in PubMed Google Scholar

  103. O. Zaimidoroga
    View author publications

    You can also search for this author in PubMed Google Scholar

  104. S. Zavatarelli
    View author publications

    You can also search for this author in PubMed Google Scholar

  105. K. Zuber
    View author publications

    You can also search for this author in PubMed Google Scholar

  106. G. Zuzel
    View author publications

    You can also search for this author in PubMed Google Scholar

Consortia

The Borexino collaboration

Corresponding author

Correspondence to A. Formozov.

Additional information

ArXiv ePrint: 1905.03512

Rights and permissions

Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

The Borexino collaboration., Agarwalla, S.K., Agostini, M. et al. Constraints on flavor-diagonal non-standard neutrino interactions from Borexino Phase-II. J. High Energ. Phys. 2020, 38 (2020). https://doi.org/10.1007/JHEP02(2020)038

Download citation

  • Received: 11 May 2019

  • Revised: 19 December 2019

  • Accepted: 20 January 2020

  • Published: 05 February 2020

  • DOI: https://doi.org/10.1007/JHEP02(2020)038

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Neutrino Physics
  • Beyond Standard Model
Download PDF

Working on a manuscript?

Avoid the common mistakes

Advertisement

Over 10 million scientific documents at your fingertips

Switch Edition
  • Academic Edition
  • Corporate Edition
  • Home
  • Impressum
  • Legal information
  • Privacy statement
  • Your US state privacy rights
  • How we use cookies
  • Your privacy choices/Manage cookies
  • Accessibility
  • FAQ
  • Contact us
  • Affiliate program

Not affiliated

Springer Nature

© 2023 Springer Nature Switzerland AG. Part of Springer Nature.