Skip to main content

Constraints on flavor-diagonal non-standard neutrino interactions from Borexino Phase-II

A preprint version of the article is available at arXiv.


The Borexino detector measures solar neutrino fluxes via neutrino-electron elastic scattering. Observed spectra are determined by the solar-νe survival probability Pee(E), and the chiral couplings of the neutrino and electron. Some theories of physics beyond the Standard Model postulate the existence of Non-Standard Interactions (NSI’s) which modify the chiral couplings and Pee(E). In this paper, we search for such NSI’s, in particular, flavor-diagonal neutral current interactions that modify the νee and ντe couplings using Borexino Phase II data. Standard Solar Model predictions of the solar neutrino fluxes for both high- and low-metallicity assumptions are considered. No indication of new physics is found at the level of sensitivity of the detector and constraints on the parameters of the NSI’s are placed. In addition, with the same dataset the value of sin2 θW is obtained with a precision comparable to that achieved in reactor antineutrino experiments



  1. SNO collaboration, Direct evidence for neutrino flavor transformation from neutral current interactions in the Sudbury Neutrino Observatory, Phys. Rev. Lett. 89 (2002) 011301 [nucl-ex/0204008] [INSPIRE].

  2. Super-Kamiokande collaboration, Solar Neutrino Measurements in Super-Kamiokande-IV, Phys. Rev. D 94 (2016) 052010 [arXiv:1606.07538] [INSPIRE].

  3. KamLAND collaboration, First results from KamLAND: Evidence for reactor anti-neutrino disappearance, Phys. Rev. Lett. 90 (2003) 021802 [hep-ex/0212021] [INSPIRE].

  4. KamLAND collaboration, Measurement of neutrino oscillation with KamLAND: Evidence of spectral distortion, Phys. Rev. Lett. 94 (2005) 081801 [hep-ex/0406035] [INSPIRE].

  5. KamLAND collaboration, Precision Measurement of Neutrino Oscillation Parameters with KamLAND, Phys. Rev. Lett. 100 (2008) 221803 [arXiv:0801.4589] [INSPIRE].

  6. L. Wolfenstein, Neutrino Oscillations in Matter, Phys. Rev. D 17 (1978) 2369 [INSPIRE].

    ADS  Google Scholar 

  7. L. Wolfenstein, Neutrino Oscillations and Stellar Collapse, Phys. Rev. D 20 (1979) 2634 [INSPIRE].

    ADS  Google Scholar 

  8. S.P. Mikheyev and A.Yu. Smirnov, Resonance Amplification of Oscillations in Matter and Spectroscopy of Solar Neutrinos, Sov. J. Nucl. Phys. 42 (1985) 913 [INSPIRE].

    Google Scholar 

  9. S.P. Mikheev and A.Yu. Smirnov, Resonant amplification of neutrino oscillations in matter and solar neutrino spectroscopy, Nuovo Cim. C 9 (1986) 17 [INSPIRE].

    ADS  Article  Google Scholar 

  10. M. Maltoni and A.Yu. Smirnov, Solar neutrinos and neutrino physics, Eur. Phys. J. A 52 (2016) 87 [arXiv:1507.05287] [INSPIRE].

    ADS  Article  Google Scholar 

  11. Borexino-SOX collaboration, Solar neutrino detectors as sterile neutrino hunters, J. Phys. Conf. Ser. 888 (2017) 012018 [INSPIRE].

  12. F. Capozzi, I.M. Shoemaker and L. Vecchi, Solar Neutrinos as a Probe of Dark Matter-Neutrino Interactions, JCAP 07 (2017) 021 [arXiv:1702.08464] [INSPIRE].

    ADS  Article  Google Scholar 

  13. R. Essig, M. Sholapurkar and T.-T. Yu, Solar Neutrinos as a Signal and Background in Direct-Detection Experiments Searching for Sub-GeV Dark Matter With Electron Recoils, Phys. Rev. D 97 (2018) 095029 [arXiv:1801.10159] [INSPIRE].

  14. Borexino collaboration, The Borexino detector at the Laboratori Nazionali del Gran Sasso, Nucl. Instrum. Meth. A 600 (2009) 568 [arXiv:0806.2400] [INSPIRE].

  15. Borexino collaboration, Final results of Borexino Phase-I on low energy solar neutrino spectroscopy, Phys. Rev. D 89 (2014) 112007 [arXiv:1308.0443] [INSPIRE].

  16. Borexino collaboration, Neutrinos from the primary proton-proton fusion process in the Sun, Nature 512 (2014) 383 [INSPIRE].

  17. Borexino collaboration, First Simultaneous Precision Spectroscopy of pp, 7Be and pep Solar Neutrinos with Borexino Phase-II, Phys. Rev. D 100 (2019) 082004 [arXiv:1707.09279] [INSPIRE].

  18. Borexino collaboration, Comprehensive measurement of pp-chain solar neutrinos, Nature 562 (2018) 505 [INSPIRE].

  19. CHARM-II collaboration, Precision measurement of electroweak parameters from the scattering of muon-neutrinos on electrons, Phys. Lett. B 335 (1994) 246 [INSPIRE].

  20. Z.G. Berezhiani and A. Rossi, Vacuum oscillation solution to the solar neutrino problem in standard and nonstandard pictures, Phys. Rev. D 51 (1995) 5229 [hep-ph/9409464] [INSPIRE].

  21. Z. Berezhiani, R.S. Raghavan and A. Rossi, Probing nonstandard couplings of neutrinos at the Borexino detector, Nucl. Phys. B 638 (2002) 62 [hep-ph/0111138] [INSPIRE].

  22. Borexino collaboration, Direct Measurement of the Be-7 Solar Neutrino Flux with 192 Days of Borexino Data, Phys. Rev. Lett. 101 (2008) 091302 [arXiv:0805.3843] [INSPIRE].

  23. S.K. Agarwalla, F. Lombardi and T. Takeuchi, Constraining Non-Standard Interactions of the Neutrino with Borexino, JHEP 12 (2012) 079 [arXiv:1207.3492] [INSPIRE].

    ADS  Article  Google Scholar 

  24. J.N. Bahcall, Neutrino-Electron Scattering and Solar Neutrino Experiments, Rev. Mod. Phys. 59 (1987) 505 [INSPIRE].

    ADS  Article  Google Scholar 

  25. J.N. Bahcall and R.K. Ulrich, Solar Models, Neutrino Experiments and Helioseismology, Rev. Mod. Phys. 60 (1988) 297 [INSPIRE].

    ADS  Article  Google Scholar 

  26. J.N. Bahcall, M.H. Pinsonneault and S. Basu, Solar models: Current epoch and time dependences, neutrinos and helioseismological properties, Astrophys. J. 555 (2001) 990 [astro-ph/0010346] [INSPIRE].

  27. N. Vinyoles et al., A new Generation of Standard Solar Models, Astrophys. J. 835 (2017) 202 [arXiv:1611.09867] [INSPIRE].

    ADS  Article  Google Scholar 

  28. E. Vitagliano, J. Redondo and G. Raffelt, Solar neutrino flux at keV energies, JCAP 12 (2017) 010 x[arXiv:1611.09867] [INSPIRE].

  29. M. Fierz, Zur fermi sohen theorie des β-zerfalls, Z. Phys. 104 (1937) 553.

    ADS  Article  Google Scholar 

  30. J.F. Nieves and P.B. Pal, Generalized Fierz identities, Am. J. Phys. 72 (2004) 1100 [hep-ph/0306087] [INSPIRE].

  31. J. Erler and A. Freitas, Electroweak Model and Constraints on New Physics, (2018).

  32. G. ’t Hooft, Predictions for neutrino-electron cross-sections in Weinberg’s model of weak interactions, Phys. Lett. 37B (1971) 195 [INSPIRE].

  33. M. Ram, Inner Bremsstrahlung in Low-Energy Electron-Neutrino (Antineutrino) Scattering, Phys. Rev. 155 (1967) 1539 [INSPIRE].

    ADS  Article  Google Scholar 

  34. W.J. Marciano and A. Sirlin, Radiative Corrections to Neutrino Induced Neutral Current Phenomena in the SU(2)L × U(1) Theory, Phys. Rev. D 22 (1980) 2695 [Erratum ibid. D 31 (1985) 213] [INSPIRE].

  35. S. Sarantakos, A. Sirlin and W.J. Marciano, Radiative Corrections to Neutrino-Lepton Scattering in the SU(2)L × U(1) Theory, Nucl. Phys. B 217 (1983) 84 [INSPIRE].

    ADS  Article  Google Scholar 

  36. J.F. Wheater and C.H. Llewellyn Smith, Electroweak Radiative Corrections to Neutrino and Electron Scattering and the Value of sin2 θW, Nucl. Phys. B 208 (1982) 27 [Erratum ibid. B 226 (1983) 547] [INSPIRE].

  37. J.N. Bahcall, M. Kamionkowski and A. Sirlin, Solar neutrinos: Radiative corrections in neutrino-electron scattering experiments, Phys. Rev. D 51 (1995) 6146 [astro-ph/9502003] [INSPIRE].

  38. M. Passera, QED corrections to neutrino electron scattering, Phys. Rev. D 64 (2001) 113002 [hep-ph/0011190] [INSPIRE].

  39. Particle Data Group collaboration, Review of Particle Physics, Chin. Phys. C 40 (2016) 100001 [INSPIRE].

  40. Particle Data Group collaboration, Review of Particle Physics, Phys. Rev. D 98 (2018) 030001 [INSPIRE].

  41. S. Antusch, J.P. Baumann and E. Fernandez-Martinez, Non-Standard Neutrino Interactions with Matter from Physics Beyond the Standard Model, Nucl. Phys. B 810 (2009) 369 [arXiv:0807.1003] [INSPIRE].

    ADS  Article  Google Scholar 

  42. M.B. Gavela, D. Hernandez, T. Ota and W. Winter, Large gauge invariant non-standard neutrino interactions, Phys. Rev. D 79 (2009) 013007 [arXiv:0809.3451] [INSPIRE].

  43. M. Malinsky, T. Ohlsson and H. Zhang, Non-Standard Neutrino Interactions from a Triplet Seesaw Model, Phys. Rev. D 79 (2009) 011301 [arXiv:0811.3346] [INSPIRE].

  44. T. Ohlsson, T. Schwetz and H. Zhang, Non-standard neutrino interactions in the Zee-Babu model, Phys. Lett. B 681 (2009) 269 [arXiv:0909.0455] [INSPIRE].

    ADS  Article  Google Scholar 

  45. M. Medina and P.C. de Holanda, Non-Standard Neutrinos Interactions in A 331 Model with Minimum Higgs Sector, Adv. High Energy Phys. 2012 (2012) 763829 [arXiv:1108.5228] [INSPIRE].

    Article  Google Scholar 

  46. Y. Farzan, A model for large non-standard interactions of neutrinos leading to the LMA-Dark solution, Phys. Lett. B 748 (2015) 311 [arXiv:1505.06906] [INSPIRE].

    ADS  Article  Google Scholar 

  47. Y. Farzan and I.M. Shoemaker, Lepton Flavor Violating Non-Standard Interactions via Light Mediators, JHEP 07 (2016) 033 [arXiv:1512.09147] [INSPIRE].

    ADS  Article  Google Scholar 

  48. Y. Farzan and J. Heeck, Neutrinophilic nonstandard interactions, Phys. Rev. D 94 (2016) 053010 [arXiv:1607.07616] [INSPIRE].

  49. M. Blennow, P. Coloma, E. Fernandez-Martinez, J. Hernandez-Garcia and J. Lopez-Pavon, Non-Unitarity, sterile neutrinos and Non-Standard neutrino Interactions, JHEP 04 (2017) 153 [arXiv:1609.08637] [INSPIRE].

    ADS  Article  Google Scholar 

  50. B. Sevda et al., Constraints on nonstandard intermediate boson exchange models from neutrino-electron scattering, Phys. Rev. D 96 (2017) 035017 [arXiv:1702.02353] [INSPIRE].

  51. M. Pospelov and Y.-D. Tsai, Light scalars and dark photons in Borexino and LSND experiments, Phys. Lett. B 785 (2018) 288 [arXiv:1706.00424] [INSPIRE].

    ADS  Article  Google Scholar 

  52. Z. Berezhiani and A. Rossi, Limits on the nonstandard interactions of neutrinos from e+e colliders, Phys. Lett. B 535 (2002) 207 [hep-ph/0111137] [INSPIRE].

  53. T. Ohlsson, Status of non-standard neutrino interactions, Rept. Prog. Phys. 76 (2013) 044201 [arXiv:1209.2710] [INSPIRE].

  54. S. Davidson, C. Pẽna-Garay, N. Rius and A. Santamaria, Present and future bounds on nonstandard neutrino interactions, JHEP 03 (2003) 011 [hep-ph/0302093] [INSPIRE].

  55. J. Barranco, O.G. Miranda, C.A. Moura and J.W.F. Valle, Constraining non-standard neutrino-electron interactions, Phys. Rev. D 77 (2008) 093014 [arXiv:0711.0698] [INSPIRE].

  56. Y. Farzan and M. Tortola, Neutrino oscillations and Non-Standard Interactions, Front. Phys. 6 (2018) 10 [arXiv:1710.09360] [INSPIRE].

    Article  Google Scholar 

  57. M.M. Guzzo, A. Masiero and S.T. Petcov, On the MSW effect with massless neutrinos and no mixing in the vacuum, Phys. Lett. B 260 (1991) 154 [INSPIRE].

    ADS  Article  Google Scholar 

  58. M.M. Guzzo and S.T. Petcov, On the matter enhanced transitions of solar neutrinos in the absence of neutrino mixing in vacuum, Phys. Lett. B 271 (1991) 172 [INSPIRE].

    ADS  Article  Google Scholar 

  59. J.W.F. Valle, Resonant Oscillations of Massless Neutrinos in Matter, Phys. Lett. B 199 (1987) 432 [INSPIRE].

    ADS  Article  Google Scholar 

  60. E. Roulet, MSW effect with flavor changing neutrino interactions, Phys. Rev. D 44 (1991) R935 [INSPIRE].

    ADS  Google Scholar 

  61. V.D. Barger, R.J.N. Phillips and K. Whisnant, Solar neutrino solutions with matter enhanced flavor changing neutral current scattering, Phys. Rev. D 44 (1991) 1629 [INSPIRE].

    ADS  Google Scholar 

  62. M. Guzzo, P.C. de Holanda, M. Maltoni, H. Nunokawa, M.A. Tortola and J.W.F. Valle, Status of a hybrid three neutrino interpretation of neutrino data, Nucl. Phys. B 629 (2002) 479 [hep-ph/0112310] [INSPIRE].

  63. A. Bolanos, O.G. Miranda, A. Palazzo, M.A. Tortola and J.W.F. Valle, Probing non-standard neutrino-electron interactions with solar and reactor neutrinos, Phys. Rev. D 79 (2009) 113012 [arXiv:0812.4417] [INSPIRE].

    ADS  Google Scholar 

  64. A. Friedland, C. Lunardini and C. Pena-Garay, Solar neutrinos as probes of neutrino matter interactions, Phys. Lett. B 594 (2004) 347 [hep-ph/0402266] [INSPIRE].

  65. I. Esteban, M.C. Gonzalez-Garcia, M. Maltoni, I. Martinez-Soler and T. Schwetz, Updated fit to three neutrino mixing: exploring the accelerator-reactor complementarity, JHEP 01 (2017) 087 [arXiv:1611.01514] [INSPIRE].

    ADS  Article  Google Scholar 

  66. A.M. Dziewonski and D.L. Anderson, Preliminary reference Earth model, Phys. Earth Planet. In. 25 (1981) 297.

    ADS  Article  Google Scholar 

  67. A. de Gouvêa, A. Friedland and H. Murayama, Earth matter effect in Be-7 solar neutrino experiments, JHEP 03 (2001) 009 [hep-ph/9910286] [INSPIRE].

  68. J.N. Bahcall, M.C. Gonzalez-Garcia and C. Pena-Garay, Robust signatures of solar neutrino oscillation solutions, JHEP 04 (2002) 007 [hep-ph/0111150] [INSPIRE].

  69. Super-Kamiokande collaboration, Constraints on neutrino oscillation parameters from the measurement of day night solar neutrino fluxes at Super-Kamiokande, Phys. Rev. Lett. 82 (1999) 1810 [hep-ex/9812009] [INSPIRE].

  70. Super-Kamiokande collaboration, Precise measurement of the solar neutrino day/night and seasonal variation in Super-Kamiokande-1, Phys. Rev. D 69 (2004) 011104 [hep-ex/0309011] [INSPIRE].

  71. SNO collaboration, Measurement of day and night neutrino energy spectra at SNO and constraints on neutrino mixing parameters, Phys. Rev. Lett. 89 (2002) 011302 [nucl-ex/0204009] [INSPIRE].

  72. SNO collaboration, Electron energy spectra, fluxes and day-night asymmetries of B-8 solar neutrinos from measurements with NaCl dissolved in the heavy-water detector at the Sudbury Neutrino Observatory, Phys. Rev. C 72 (2005) 055502 [nucl-ex/0502021] [INSPIRE].

  73. S.S. Aleshin, O.G. Kharlanov and A.E. Lobanov, Analytical treatment of long-term observations of the day-night asymmetry for solar neutrinos, Phys. Rev. D 87 (2013) 045025 [arXiv:1302.7201] [INSPIRE].

  74. A.N. Ioannisian, A.Yu. Smirnov and D. Wyler, Oscillations of the 7Be solar neutrinos inside the Earth, Phys. Rev. D 92 (2015) 013014 [arXiv:1503.02183] [INSPIRE].

  75. Borexino collaboration, Absence of day-night asymmetry of 862 keV 7Be solar neutrino rate in Borexino and MSW oscillation parameters, Phys. Lett. B 707 (2012) 22 [arXiv:1104.2150] [INSPIRE].

  76. Borexino collaboration, The Monte Carlo simulation of the Borexino detector, Astropart. Phys. 97 (2018) 136 [arXiv:1704.02291] [INSPIRE].

  77. Borexino collaboration, Borexino calibrations: Hardware, Methods and Results, 2012 JINST 7 P10018 [arXiv:1207.4816] [INSPIRE].

  78. F. Capozzi, E. Lisi, A. Marrone, D. Montanino and A. Palazzo, Neutrino masses and mixings: Status of known and unknown 3ν parameters, Nucl. Phys. B 908 (2016) 218 [arXiv:1601.07777] [INSPIRE].

    ADS  Article  Google Scholar 

  79. LSND collaboration, Measurement of electron-neutrino electron elastic scattering, Phys. Rev. D 63 (2001) 112001 [hep-ex/0101039] [INSPIRE].

  80. TEXONO collaboration, Constraints on Non-Standard Neutrino Interactions and Unparticle Physics with Neutrino-Electron Scattering at the Kuo-Sheng Nuclear Power Reactor, Phys. Rev. D 82 (2010) 033004 [arXiv:1006.1947] [INSPIRE].

  81. Borexino collaboration, First real time detection of 7Be solar neutrinos by Borexino, Phys. Lett. B 658 (2008) 101 [arXiv:0708.2251] [INSPIRE].

  82. Borexino collaboration, Measurement of the solar 8B neutrino rate with a liquid scintillator target and 3 MeV energy threshold in the Borexino detector, Phys. Rev. D 82 (2010) 033006 [arXiv:0808.2868] [INSPIRE].

  83. S.K. Agarwalla, Y. Kao and T. Takeuchi, Analytical approximation of the neutrino oscillation matter effects at large θ13, JHEP 04 (2014) 047 [arXiv:1302.6773] [INSPIRE].

    ADS  Article  Google Scholar 

  84. S.K. Agarwalla, Y. Kao, D. Saha and T. Takeuchi, Running of Oscillation Parameters in Matter with Flavor-Diagonal Non-Standard Interactions of the Neutrino, JHEP 11 (2015) 035 [arXiv:1506.08464] [INSPIRE].

    ADS  Article  Google Scholar 

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited

Author information

Authors and Affiliations



Corresponding author

Correspondence to A. Formozov.

Additional information

ArXiv ePrint: 1905.03512

Rights and permissions

Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

The Borexino collaboration., Agarwalla, S.K., Agostini, M. et al. Constraints on flavor-diagonal non-standard neutrino interactions from Borexino Phase-II. J. High Energ. Phys. 2020, 38 (2020).

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI:


  • Neutrino Physics
  • Beyond Standard Model