Skip to main content
Springer Nature Link
Account
Menu
Find a journal Publish with us Track your research
Search
Cart
  1. Home
  2. Journal of High Energy Physics
  3. Article

Dark matter bound state formation via emission of a charged scalar

  • Regular Article - Theoretical Physics
  • Open access
  • Published: 05 February 2020
  • Volume 2020, article number 36, (2020)
  • Cite this article
Download PDF

You have full access to this open access article

Journal of High Energy Physics Aims and scope Submit manuscript
Dark matter bound state formation via emission of a charged scalar
Download PDF
  • Ruben Oncala1,2 &
  • Kalliopi Petraki1,2 
  • 287 Accesses

  • 16 Citations

  • 2 Altmetric

  • Explore all metrics

A preprint version of the article is available at arXiv.

Abstract

The formation of stable or meta-stable bound states can dramatically affect the phenomenology of dark matter (DM). Although the capture into bound states via emission of a vector is known to be significant, the capture via scalar emission suffers from cancellations that render it important only within narrow parameter space. While this is true for neutral scalar mediators, here we show that bound-state formation via emission of a charged scalar can be extremely significant. To this end, we consider DM charged under a dark U(1) force and coupled also to a light complex scalar that is charged under the same gauge symmetry. We compute the cross-sections for bound-state formation via emission of the charged scalar, and show that they can exceed those for capture via vector emission, as well as annihilation, by orders of magnitude. This holds even for very small values of the DM coupling to the charged scalar, and remains true in the limit of global symmetry. We then compute the DM thermal freeze-out, and find that the capture into meta-stable bound states via emission of a charged scalar can cause a late period of significant DM depletion. Our results include analytical expressions in the Coulomb limit, and are readily generalisable to non-Abelian interactions. We expect them to have implications for Higgs-portal scenarios of multi-TeV WIMP DM, as well as scenarios that feature dark Higgses or (darkly-)charged inert scalars, including models of self-interacting DM.

Article PDF

Download to read the full article text

Similar content being viewed by others

Dark matter bound states via emission of scalar mediators

Article Open access 08 January 2019

Thermal dark matter co-annihilating with a strongly interacting scalar

Article Open access 13 April 2018

Radiative bound-state formation in unbroken perturbative non-Abelian theories and implications for dark matter

Article Open access 13 July 2018
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

References

  1. J. Harz and K. Petraki, Higgs Enhancement for the Dark Matter Relic Density, Phys. Rev. D 97 (2018) 075041 [arXiv:1711.03552] [INSPIRE].

  2. J. Harz and K. Petraki, Higgs-mediated bound states in dark-matter models, JHEP 04 (2019) 130 [arXiv:1901.10030] [INSPIRE].

    Article  ADS  Google Scholar 

  3. M.B. Wise and Y. Zhang, Stable Bound States of Asymmetric Dark Matter, Phys. Rev. D 90 (2014) 055030 [Erratum ibid. D 91 (2015) 039907] [arXiv:1407.4121] [INSPIRE].

  4. K. Petraki, M. Postma and J. de Vries, Radiative bound-state-formation cross-sections for dark matter interacting via a Yukawa potential, JHEP 04 (2017) 077 [arXiv:1611.01394] [INSPIRE].

    Article  ADS  Google Scholar 

  5. R. Oncala and K. Petraki, Dark matter bound states via emission of scalar mediators, JHEP 01 (2019) 070 [arXiv:1808.04854] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  6. A. Migdal, Qualitative Methods In Quantum Theory, Advanced Books Classics, Avalon Publishing (2000).

  7. B. von Harling and K. Petraki, Bound-state formation for thermal relic dark matter and unitarity, JCAP 12 (2014) 033 [arXiv:1407.7874] [INSPIRE].

    Article  Google Scholar 

  8. J. Harz and K. Petraki, Radiative bound-state formation in unbroken perturbative non-Abelian theories and implications for dark matter, JHEP 07 (2018) 096 [arXiv:1805.01200] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  9. Y. Kats and M.D. Schwartz, Annihilation decays of bound states at the LHC, JHEP 04 (2010) 016 [arXiv:0912.0526] [INSPIRE].

    Article  ADS  Google Scholar 

  10. K. Petraki, M. Postma and M. Wiechers, Dark-matter bound states from Feynman diagrams, JHEP 06 (2015) 128 [arXiv:1505.00109] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  11. A. Sommerfeld, Über die Beugung und Bremsung der Elektronen, Annals Phys. 403 (1931) 257.

    Article  ADS  Google Scholar 

  12. A.D. Sakharov, Interaction of an Electron and Positron in Pair Production, Zh. Eksp. Teor. Fiz. 18 (1948) 631 [INSPIRE].

    Google Scholar 

  13. I. Baldes and K. Petraki, Asymmetric thermal-relic dark matter: Sommerfeld-enhanced freeze-out, annihilation signals and unitarity bounds, JCAP 09 (2017) 028 [arXiv:1703.00478] [INSPIRE].

    ADS  Google Scholar 

  14. I. Baldes, M. Cirelli, P. Panci, K. Petraki, F. Sala and M. Taoso, Asymmetric dark matter: residual annihilations and self-interactions, SciPost Phys. 4 (2018) 041 [arXiv:1712.07489] [INSPIRE].

    Article  ADS  Google Scholar 

  15. M. Cirelli, Y. Gouttenoire, K. Petraki and F. Sala, Homeopathic Dark Matter, or how diluted heavy substances produce high energy cosmic rays, JCAP 02 (2019) 014 [arXiv:1811.03608] [INSPIRE].

    Article  ADS  Google Scholar 

  16. H. Fukuda, F. Luo and S. Shirai, How Heavy can Neutralino Dark Matter be?, JHEP 04 (2019) 107 [arXiv:1812.02066] [INSPIRE].

    Article  ADS  Google Scholar 

  17. M. Pospelov and A. Ritz, Astrophysical Signatures of Secluded Dark Matter, Phys. Lett. B 671 (2009) 391 [arXiv:0810.1502] [INSPIRE].

    Article  ADS  Google Scholar 

  18. L. Pearce, K. Petraki and A. Kusenko, Signals from dark atom formation in halos, Phys. Rev. D 91 (2015) 083532 [arXiv:1502.01755] [INSPIRE].

  19. H. An, M.B. Wise and Y. Zhang, Effects of Bound States on Dark Matter Annihilation, Phys. Rev. D 93 (2016) 115020 [arXiv:1604.01776] [INSPIRE].

    ADS  Google Scholar 

  20. M. Cirelli, P. Panci, K. Petraki, F. Sala and M. Taoso, Dark Matter’s secret liaisons: phenomenology of a dark U(1) sector with bound states, JCAP 05 (2017) 036 [arXiv:1612.07295] [INSPIRE].

    Article  ADS  Google Scholar 

  21. A. Messiah, Quantum mechanics, North-Holland Pub. Co. (1962).

  22. P. Asadi, M. Baumgart, P.J. Fitzpatrick, E. Krupczak and T.R. Slatyer, Capture and Decay of Electroweak WIMPonium, JCAP 02 (2017) 005 [arXiv:1610.07617] [INSPIRE].

    Article  ADS  Google Scholar 

  23. S. Cassel, Sommerfeld factor for arbitrary partial wave processes, J. Phys. G 37 (2010) 105009 [arXiv:0903.5307] [INSPIRE].

    Article  ADS  Google Scholar 

  24. T. Binder, K. Mukaida and K. Petraki, Rapid bound-state formation of Dark Matter in the Early Universe, arXiv:1910.11288 [INSPIRE].

  25. S. Kim and M. Laine, Rapid thermal co-annihilation through bound states in QCD, JHEP 07 (2016) 143 [arXiv:1602.08105] [INSPIRE].

    Article  ADS  Google Scholar 

  26. S. Biondini and M. Laine, Re-derived overclosure bound for the inert doublet model, JHEP 08 (2017) 047 [arXiv:1706.01894] [INSPIRE].

    Article  ADS  Google Scholar 

  27. S. Biondini, Bound-state effects for dark matter with Higgs-like mediators, JHEP 06 (2018) 104 [arXiv:1805.00353] [INSPIRE].

    Article  ADS  Google Scholar 

  28. K. Griest and M. Kamionkowski, Unitarity Limits on the Mass and Radius of Dark Matter Particles, Phys. Rev. Lett. 64 (1990) 615 [INSPIRE].

    Article  ADS  Google Scholar 

  29. Planck collaboration, Planck 2018 results. VI. Cosmological parameters, arXiv:1807.06209 [INSPIRE].

  30. S.P. Liew and F. Luo, Effects of QCD bound states on dark matter relic abundance, JHEP 02 (2017) 091 [arXiv:1611.08133] [INSPIRE].

    Article  ADS  Google Scholar 

  31. T. Binder, L. Covi and K. Mukaida, Dark Matter Sommerfeld-enhanced annihilation and Bound-state decay at finite temperature, Phys. Rev. D 98 (2018) 115023 [arXiv:1808.06472] [INSPIRE].

    ADS  Google Scholar 

  32. L.G. van den Aarssen, T. Bringmann and Y.C. Goedecke, Thermal decoupling and the smallest subhalo mass in dark matter models with Sommerfeld-enhanced annihilation rates, Phys. Rev. D 85 (2012) 123512 [arXiv:1202.5456] [INSPIRE].

    ADS  Google Scholar 

  33. T. Binder, M. Gustafsson, A. Kamada, S.M.R. Sandner and M. Wiesner, Reannihilation of self-interacting dark matter, Phys. Rev. D 97 (2018) 123004 [arXiv:1712.01246] [INSPIRE].

    ADS  Google Scholar 

  34. P. Gondolo and G. Gelmini, Cosmic abundances of stable particles: Improved analysis, Nucl. Phys. B 360 (1991) 145 [INSPIRE].

    Article  ADS  Google Scholar 

  35. S.J. Lonsdale and R.R. Volkas, Grand unified hidden-sector dark matter, Phys. Rev. D 90 (2014) 083501 [Erratum ibid. D 91 (2015) 129906] [arXiv:1407.4192] [INSPIRE].

  36. S.J. Lonsdale, M. Schroor and R.R. Volkas, Asymmetric Dark Matter and the hadronic spectra of hidden QCD, Phys. Rev. D 96 (2017) 055027 [arXiv:1704.05213] [INSPIRE].

  37. L. Lopez Honorez, M.H.G. Tytgat, P. Tziveloglou and B. Zaldivar, On Minimal Dark Matter coupled to the Higgs, JHEP 04 (2018) 011 [arXiv:1711.08619] [INSPIRE].

    Article  Google Scholar 

  38. P. Ko, T. Matsui and Y.-L. Tang, Dark Matter Bound State Formation in Fermionic Z2 DM model with Light Dark Photon and Dark Higgs Boson, arXiv:1910.04311 [INSPIRE].

  39. I.S. Gradshteyn, I.M. Ryzhik, A. Jeffrey and D. Zwillinger, Table of Integrals, Series, and Products, Academic Press (2007).

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited

Author information

Authors and Affiliations

  1. Nikhef, Science Park 105, 1098 XG, Amsterdam, The Netherlands

    Ruben Oncala & Kalliopi Petraki

  2. Sorbonne Université, CNRS, Laboratoire de Physique Théorique et Hautes Energies (LPTHE), UMR 7589 CNRS & Sorbonne Université, 4 Place Jussieu, F-75252, Paris, France

    Ruben Oncala & Kalliopi Petraki

Authors
  1. Ruben Oncala
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Kalliopi Petraki
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Ruben Oncala.

Additional information

ArXiv ePrint: 1911.02605

Rights and permissions

Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oncala, R., Petraki, K. Dark matter bound state formation via emission of a charged scalar. J. High Energ. Phys. 2020, 36 (2020). https://doi.org/10.1007/JHEP02(2020)036

Download citation

  • Received: 14 November 2019

  • Revised: 06 January 2020

  • Accepted: 24 January 2020

  • Published: 05 February 2020

  • DOI: https://doi.org/10.1007/JHEP02(2020)036

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Beyond Standard Model
  • Cosmology of Theories beyond the SM
  • Nonperturbative Effects
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us
  • Track your research

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Journal finder
  • Publish your research
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our imprints

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support
  • Cancel contracts here

Not affiliated

Springer Nature

© 2024 Springer Nature