Skip to main content

Advertisement

SpringerLink
Log in
Menu
Find a journal Publish with us
Search
Cart
  1. Home
  2. Journal of High Energy Physics
  3. Article
Expectation values of coherent states for SU(2) Lattice Gauge Theories
Download PDF
Download PDF
  • Regular Article - Theoretical Physics
  • Open Access
  • Published: 04 February 2020

Expectation values of coherent states for SU(2) Lattice Gauge Theories

  • Klaus Liegener1 &
  • Ernst-Albrecht Zwicknagel2 

Journal of High Energy Physics volume 2020, Article number: 24 (2020) Cite this article

  • 258 Accesses

  • 3 Citations

  • 1 Altmetric

  • Metrics details

A preprint version of the article is available at arXiv.

Abstract

This article investigates properties of semiclassical Gauge Field Theory Coherent States for general quantum gauge theories. Useful, e.g., for the canonical formulation of Lattice Gauge Theories these states are labelled by a point in the classical phase space and constructed such that the expectation values of the canonical operators are sharply peaked on said phase space point. For the case of the non-abelian gauge group SU(2), we will explicitly compute the expectation value of general polynomials including the first order quantum corrections. This allows asking more precise questions about the quantum fluctuations of any given semiclassical system.

Download to read the full article text

Working on a manuscript?

Avoid the common mistakes

References

  1. M. Creutz, Quarks, Gluons and Lattices, Cambridge University Press (1984) [INSPIRE].

  2. I. Montvay and G. Münster, Quantum Fields on a Lattice, Cambridge University Press (1994) [INSPIRE].

  3. R. Gupta, Introduction to lattice QCD: Course, in Probing the standard model of particle interactions. Proceedings, Summer School in Theoretical Physics, NATO Advanced Study Institute, 68th session, Les Houches, France, 28July–5 September 1997. Pt. 1, 2, pp. 83–219 (1997) [hep-lat/9807028] [INSPIRE].

  4. G. Munster and M. Walzl, Lattice gauge theory: A Short primer, in Phenomenology of gauge interactions. Proceedings, Summer School, Zuoz, Switzerland, 13–19 August 2000, pp. 127–160 (2000) [hep-lat/0012005] [INSPIRE].

  5. J. Smit, Introduction to quantum fields on a lattice: a robust mate, Cambridge University Press (2002) [INSPIRE].

  6. S. Hashimoto, J. Laiho and S. Sharpe, Lattice Quantum Chromodynamics, (2017) [http://pdg.lbl.gov/2017/mobile/reviews/pdf/rpp2017-rev-lattice-qcd-m.pdf ].

  7. USQCD collaboration, Status and Future Perspectives for Lattice Gauge Theory Calculations to the Exascale and Beyond, Eur. Phys. J. A 55 (2019) 199 [arXiv:1904.09725] [INSPIRE].

    Google Scholar 

  8. USQCD collaboration, The Role of Lattice QCD in Searches for Violations of Fundamental Symmetries and Signals for New Physics, Eur. Phys. J. A 55 (2019) 197 [arXiv:1904.09704] [INSPIRE].

    Google Scholar 

  9. USQCD collaboration, Lattice Gauge Theory for Physics Beyond the Standard Model, Eur. Phys. J. A 55 (2019) 198 [arXiv:1904.09964] [INSPIRE].

    Google Scholar 

  10. B. Svetitsky, Looking behind the Standard Model with lattice gauge theory, EPJ Web Conf. 175 (2018) 01017 [arXiv:1708.04840] [INSPIRE].

    Article  Google Scholar 

  11. R. Gambini and J. Pullin, Loops, knots, gauge theories and quantum gravity, Cambridge University Press (2000) [INSPIRE].

  12. C. Rovelli, Quantum gravity, Cambridge University Press (2004) [INSPIRE].

  13. T. Thiemann, Modern canonical quantum general relativity, Cambridge University Press (2007) [INSPIRE].

  14. https://www.claymath.org/millennium-problems/yang-and-mass-gap.

  15. J.B. Kogut and L. Susskind, Hamiltonian Formulation of Wilson’s Lattice Gauge Theories, Phys. Rev. D 11 (1975) 395 [INSPIRE].

    ADS  Google Scholar 

  16. K.G. Wilson and J.B. Kogut, The Renormalization group and the E-expansion, Phys. Rept. 12 (1974) 75 [INSPIRE].

    Article  ADS  Google Scholar 

  17. K.G. Wilson, The Renormalization Group: Critical Phenomena and the Kondo Problem, Rev. Mod. Phys. 47 (1975) 773 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  18. T. Balaban, Large field renormalization I. The Basic Step of the R Operation, Commun. Math. Phys. 122 (1989) 207.

    MathSciNet  MATH  Google Scholar 

  19. T. Balaban, Large Field Renormalization. 2: Localization, Exponentiation and Bounds for the R Operation, Commun. Math. Phys. 122 (1989) 355 [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. P. Hasenfratz, The Theoretical background and properties of perfect actions, in Nonperturbative quantum field physics. Proceedings, Advanced School, Peniscola, Spain, 2–6 June 1997, pp. 137–199 (1998) [hep-lat/9803027] [INSPIRE].

  21. F.J. Wegner, Corrections to scaling laws, Phys. Rev. B 5 (1972) 4529 [INSPIRE].

    Article  ADS  Google Scholar 

  22. S.D. Glazek and K.G. Wilson, Perturbative renormalization group for Hamiltonians, Phys. Rev. D 49 (1994) 4214 [INSPIRE].

    ADS  Google Scholar 

  23. T. Lang, K. Liegener and T. Thiemann, Hamiltonian renormalisation I: derivation from Osterwalder-Schrader reconstruction, Class. Quant. Grav. 35 (2018) 245011 [arXiv:1711.05685] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. T. Lang, K. Liegener and T. Thiemann, Hamiltonian Renormalisation II. Renormalisation Flow of 1 + 1 dimensional free scalar fields: Derivation, Class. Quant. Grav. 35 (2018) 245012 [arXiv:1711.06727] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. T. Lang, K. Liegener and T. Thiemann, Hamiltonian renormalization III. Renormalisation flow of 1 + 1 dimensional free scalar fields: properties, Class. Quant. Grav. 35 (2018) 245013 [arXiv:1711.05688] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. T. Lang, K. Liegener and T. Thiemann, Hamiltonian renormalisation IV. Renormalisation flow of D + 1 dimensional free scalar fields and rotation invariance, Class. Quant. Grav. 35 (2018) 245014 [arXiv:1711.05695] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. F. Verstraete, J. Cirac and V. Murg, Matrix Product States, Projected Entangled Pair States, and variational renormalization group methods for quantum spin systems, Adv. Phys. 57 (2008) 143 [arXiv:0907.2796].

    Article  ADS  Google Scholar 

  28. R. Orus, A Practical Introduction to Tensor Networks: Matrix Product States and Projected Entangled Pair States, Annals Phys. 349 (2014) 117 [arXiv:1306.2164] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. P. Sala, T. Shi, S. Kühn, M.C. Bañuls, E. Demler and J.I. Cirac, Variational study of U(1) and SU(2) lattice gauge theories with Gaussian states in 1 + 1 dimensions, Phys. Rev. D 98 (2018) 034505 [arXiv:1805.05190] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  30. B. Hall The Segal-Bargmann ‘Coherent State’ Transform for Compact Lie Groups, J. Func. Anal. 122 (1994) 103.

    Article  MathSciNet  MATH  Google Scholar 

  31. B. Hall, Phase Space Bounds for Quantum Mechanics on a Compact Lie Group, Commun. Math. Phys. 184 (1997) 233.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. T. Thiemann, Gauge field theory coherent states (GCS): 1. General properties, Class. Quant. Grav. 18 (2001) 2025 [hep-th/0005233] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. T. Thiemann and O. Winkler, Gauge field theory coherent states (GCS). 2. Peakedness properties, Class. Quant. Grav. 18 (2001) 2561 [hep-th/0005237] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. T. Thiemann and O. Winkler, Gauge field theory coherent states (GCS): 3. Ehrenfest theorems, Class. Quant. Grav. 18 (2001) 4629 [hep-th/0005234] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  35. H. Sahlmann, T. Thiemann and O. Winkler, Coherent states for canonical quantum general relativity and the infinite tensor product extension, Nucl. Phys. B 606 (2001) 401 [gr-qc/0102038] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  36. A. Dapor and K. Liegener, Cosmological coherent state expectation values in loop quantum gravity I. Isotropic kinematics, Class. Quant. Grav. 35 (2018) 135011 [arXiv:1710.04015] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  37. K. Giesel and T. Thiemann, Algebraic Quantum Gravity (AQG). II. Semiclassical Analysis, Class. Quant. Grav. 24 (2007) 2499 [gr-qc/0607100] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  38. K. Liegener and T. Thiemann, Towards the fundamental spectrum of the Quantum Yang-Mills Theory, Phys. Rev. D 94 (2016) 024042 [arXiv:1605.05975] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  39. T. Lang, Peakedness properties of SU(3) heat kernel coherent states, supervised by T. Thiemann, MSc Thesis, Friedrich-Alexander-University Erlangen-Nürnberg (2016).

  40. T. Thiemann, Quantum spin dynamics (QSD): 7. Symplectic structures and continuum lattice formulations of gauge field theories, Class. Quant. Grav. 18 (2001) 3293 [hep-th/0005232] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  41. R. Anishetty and I. Raychowdhury, SU(2) lattice gauge theory: Local dynamics on nonintersecting electric flux loops, Phys. Rev. D 90 (2014) 114503 [arXiv:1408.6331] [INSPIRE].

    ADS  Google Scholar 

  42. M. Mathur and T.P. Sreeraj, Canonical Transformations and Loop Formulation of SU(N ) Lattice Gauge Theories, Phys. Rev. D 92 (2015) 125018 [arXiv:1509.04033] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  43. I. Raychowdhury, Low energy spectrum of SU(2) lattice gauge theory, Eur. Phys. J. C 79 (2019) 235 [arXiv:1804.01304] [INSPIRE].

    Article  ADS  Google Scholar 

  44. M. Carmeli, Group Theory and General Relativity: Representations of the Lorentz Group and Their Applications to the Gravitational Field, Imperial College Press (2000) [INSPIRE].

  45. E. Bianchi, E. Magliaro and C. Perini, Coherent spin-networks, Phys. Rev. D 82 (2010) 024012 [arXiv:0912.4054] [INSPIRE].

    ADS  Google Scholar 

  46. F. Peter and H. Weyl, Die Vollständigkeit der primitiven Darstellungen einer geschlossenen kontinuierlichen Gruppe, Math. Ann. 97 (1927) 737.

    Article  MathSciNet  MATH  Google Scholar 

  47. M. Creutz, Gauge Fixing, the Transfer Matrix and Confinement on a Lattice, Phys. Rev. D 15 (1977) 1128 [INSPIRE].

    ADS  Google Scholar 

  48. C.E. Detar, J.E. King, S.P. Li and L.D. McLerran, Axial Gauge Propagators for Quarks and Gluons on the Polyakov-Wilson Lattice, Nucl. Phys. B 249 (1985) 621 [INSPIRE].

    Article  ADS  Google Scholar 

  49. D.H. Adams, Gauge fixing, families index theory and topological features of the space of lattice gauge fields, Nucl. Phys. B 640 (2002) 435 [hep-lat/0203014] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  50. A. Ashtekar, J. Lewandowski, D. Marolf, J. Mourao and T. Thiemann, Quantization of diffeomorphism invariant theories of connections with local degrees of freedom, J. Math. Phys. 36 (1995) 6456 [gr-qc/9504018] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  51. D. Marolf, Quantum observables and recollapsing dynamics, Class. Quant. Grav. 12 (1995) 1199 [gr-qc/9404053] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  52. D. Marolf, Refined algebraic quantization: Systems with a single constraint, gr-qc/9508015 [INSPIRE].

  53. D. Marolf, Group averaging and refined algebraic quantization: Where are we now?, in Recent developments in theoretical and experimental general relativity, gravitation and relativistic field theories. Proceedings, 9th Marcel Grossmann Meeting, MG’9, Rome, Italy, 2–8 July 2000, Pts. A–C, (2000) [gr-qc/0011112] [INSPIRE].

  54. B. Bahr and T. Thiemann, Gauge-invariant coherent states for loop quantum gravity. II. Non-Abelian gauge groups, Class. Quant. Grav. 26 (2009) 045012 [arXiv:0709.4636] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  55. S. Bochner, Vorlesungen über Fourier Integrale, Akad. Verl-Ges. (1948).

    MATH  Google Scholar 

  56. D. Brink and C. Satchler, Angular Momentum, Clarendon Press, Oxford (1968).

    MATH  Google Scholar 

  57. G. Racah, Theory of Complex Spectra. II, Phys. Rev. 62 (1942) 438 [INSPIRE].

    Article  ADS  Google Scholar 

  58. D. Varshalovich, Quantum theory of angular momentum, World Scientific (1988).

  59. L. Slater, Generalized Hypergeometric Functions, Cambridge University Press (1966).

  60. W. Bailey, Generalized Hypergeometric Series, Cambridge Tracts In Mathematics And Mathematical Physics, Hafner (1972).

  61. A. Actor, Classical Solutions of SU(2) Yang-Mills Theories, Rev. Mod. Phys. 51 (1979) 461 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  62. O. Oliveira and R.A. Coimbra, Classical solutions of SU(2) and SU(3) pure Yang-Mills theories and heavy quark spectrum, hep-ph/0305305 [INSPIRE].

  63. K. Liegener and L. Rudnicki, Cosmological Coherent State Expectation values in LQG II, to appear.

  64. M. Han and H. Liu, Effective Dynamics from Coherent State Path Integral of Full Loop Quantum Gravity, arXiv:1910.03763 [INSPIRE].

  65. R. Kadison and J. Ringrose, Fundamentals of the theory of operators algebras. Vol. 2, Academic Press Inc., London (1986).

    MATH  Google Scholar 

  66. J. Janas, Inductive limit of operators and its applications, Studia Mathematica, T. XC. (1988).

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited

Author information

Authors and Affiliations

  1. Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA, 70803, USA

    Klaus Liegener

  2. Institute for Quantum Gravity, Friedrich-Alexander University Erlangen-Nürnberg, Staudtstraße 7, 91058, Erlangen, Germany

    Ernst-Albrecht Zwicknagel

Authors
  1. Klaus Liegener
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Ernst-Albrecht Zwicknagel
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Klaus Liegener.

Additional information

ArXiv ePrint: 2001.00032

Rights and permissions

Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liegener, K., Zwicknagel, EA. Expectation values of coherent states for SU(2) Lattice Gauge Theories. J. High Energ. Phys. 2020, 24 (2020). https://doi.org/10.1007/JHEP02(2020)024

Download citation

  • Received: 06 January 2020

  • Accepted: 17 January 2020

  • Published: 04 February 2020

  • DOI: https://doi.org/10.1007/JHEP02(2020)024

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Lattice Quantum Field Theory
  • Gauge Symmetry
  • Nonperturbative Effects
  • Beyond Standard Model
Download PDF

Working on a manuscript?

Avoid the common mistakes

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Publish your research
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our imprints

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support

Not affiliated

Springer Nature

© 2023 Springer Nature