Skip to main content

Newton-Hooke/Carrollian expansions of (A)dS and Chern-Simons gravity

A preprint version of the article is available at arXiv.

Abstract

We construct finite- and infinite-dimensional non-relativistic extensions of the Newton-Hooke and Carroll (A)dS algebras using the algebra expansion method, starting from the (anti-)de Sitter relativistic algebra in D dimensions. These algebras are also shown to be embedded in different affine Kac-Moody algebras. In the three-dimensional case, we construct Chern-Simons actions invariant under these symmetries. This leads to a sequence of non-relativistic gravity theories, where the simplest examples correspond to extended Newton-Hooke and extended (post-)Newtonian gravity together with their Carrollian counterparts.

References

  1. E. Inönü and E.P. Wigner, On the Contraction of groups and their represenations, Proc. Nat. Acad. Sci. 39 (1953) 510 [INSPIRE].

  2. V. Bargmann, On unitary ray representations of continuous groups, Annals Math. 59 (1954) 1.

    MathSciNet  Article  Google Scholar 

  3. J.-M. Lévy-Leblond, Group-theoretical foundations of classical mechanics: the lagrangian gauge problem, Commun. Math. Phys. 12 (1969) 64.

  4. G. Marmo, G. Morandi, A. Simoni and E.C.G. Sudarshan, Quasiinvariance and Central Extensions, Phys. Rev. D 37 (1988) 2196 [INSPIRE].

    ADS  Google Scholar 

  5. M. Hatsuda and M. Sakaguchi, Wess-Zumino term for the AdS superstring and generalized Inönü-Wigner contraction, Prog. Theor. Phys. 109 (2003) 853 [hep-th/0106114] [INSPIRE].

    ADS  Article  Google Scholar 

  6. J.A. de Azcárraga, J.M. Izquierdo, M. Picón and O. Varela, Generating Lie and gauge free differential (super)algebras by expanding Maurer-Cartan forms and Chern-Simons supergravity, Nucl. Phys. B 662 (2003) 185 [hep-th/0212347] [INSPIRE].

  7. F. Izaurieta, E. Rodríguez and P. Salgado, Expanding Lie (super)algebras through Abelian semigroups, J. Math. Phys. 47 (2006) 123512 [hep-th/0606215] [INSPIRE].

  8. E. Bergshoeff, J.M. Izquierdo, T. Ortín and L. Romano, Lie Algebra Expansions and Actions for Non-Relativistic Gravity, JHEP 08 (2019) 048 [arXiv:1904.08304] [INSPIRE].

  9. D. Hansen, J. Hartong and N.A. Obers, Action Principle for Newtonian Gravity, Phys. Rev. Lett. 122 (2019) 061106 [arXiv:1807.04765] [INSPIRE].

  10. D. Hansen, J. Hartong and N.A. Obers, Gravity between Newton and Einstein, Int. J. Mod. Phys. D 28 (2019) 1944010 [arXiv:1904.05706] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  11. N. Ozdemir, M. Ozkan, O. Tunca and U. Zorba, Three-Dimensional Extended Newtonian (Super)Gravity, JHEP 05 (2019) 130 [arXiv:1903.09377] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  12. J. Gomis, A. Kleinschmidt, J. Palmkvist and P. Salgado-ReboLledó, Symmetries of post-Newtonian expansions, arXiv:1910.13560 [INSPIRE].

  13. N. González, G. Rubio, P. Salgado and S. Salgado, Generalized Galilean algebras and Newtonian gravity, Phys. Lett. B 755 (2016) 433 [arXiv:1604.06313] [INSPIRE].

  14. D.M. Peñafiel and L. Ravera, Infinite S-Expansion with Ideal Subtraction and Some Applications, J. Math. Phys. 58 (2017) 081701 [arXiv:1611.05812] [INSPIRE].

  15. J.A. de Azcárraga, D. Gútiez and J.M. Izquierdo, Extended D = 3 Bargmann supergravity from a Lie algebra expansion, arXiv:1904.12786 [INSPIRE].

  16. D.M. Peñafiel and P. Salgado-Rebolledo, Non-relativistic symmetries in three space-time dimensions and the Nappi-Witten algebra, Phys. Lett. B 798 (2019) 135005 [arXiv:1906.02161].

  17. P. Concha and E. Rodríguez, Non-Relativistic Gravity Theory based on an Enlargement of the Extended Bargmann Algebra, JHEP 07 (2019) 085 [arXiv:1906.00086] [INSPIRE].

  18. J. Gomis, A. Kleinschmidt and J. Palmkvist, Galilean free Lie algebras, JHEP 09 (2019) 109 [arXiv:1907.00410] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  19. H. Bacry and J. Lévy-Leblond, Possible kinematics, J. Math. Phys. 9 (1968) 1605 [INSPIRE].

  20. J.-R. Derome and J.-G. Dubois, Hooke’s symmetries and nonrelativistic cosmological kinematics. I, Nuovo Cim. B 9 (1972) 351.

  21. C. Duval, G.W. Gibbons, P.A. Horvathy and P.M. Zhang, Carroll versus Newton and Galilei: two dual non-Einsteinian concepts of time, Class. Quant. Grav. 31 (2014) 085016 [arXiv:1402.0657] [INSPIRE].

  22. T.E. Clark and T. ter Veldhuis, AdS-Carroll Branes, J. Math. Phys. 57 (2016) 112303 [arXiv:1605.05484] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  23. R. Basu and U.N. Chowdhury, Dynamical structure of Carrollian Electrodynamics, JHEP 04 (2018) 111 [arXiv:1802.09366] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  24. A. Barducci, R. Casalbuoni and J. Gomis, Confined dynamical systems with Carroll and Galilei symmetries, Phys. Rev. D 98 (2018) 085018 [arXiv:1804.10495] [INSPIRE].

  25. G. Papageorgiou and B.J. Schroers, Galilean quantum gravity with cosmological constant and the extended q-Heisenberg algebra, JHEP 11 (2010) 020 [arXiv:1008.0279] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  26. J. Hartong, Y. Lei and N.A. Obers, Nonrelativistic Chern-Simons theories and three-dimensional Hořava-Lifshitz gravity, Phys. Rev. D 94 (2016) 065027 [arXiv:1604.08054] [INSPIRE].

  27. G. Papageorgiou and B.J. Schroers, A Chern-Simons approach to Galilean quantum gravity in 2+1 dimensions, JHEP 11 (2009) 009 [arXiv:0907.2880] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  28. E.A. Bergshoeff and J. Rosseel, Three-Dimensional Extended Bargmann Supergravity, Phys. Rev. Lett. 116 (2016) 251601 [arXiv:1604.08042] [INSPIRE].

    ADS  Article  Google Scholar 

  29. G. Dautcourt, On the Newtonian limit of general relativity, Acta Phys. Polon. B 21 (1990) 755.

    MathSciNet  Google Scholar 

  30. R. De Pietri, L. Lusanna and M. Pauri, Standard and generalized Newtonian gravities as ‘gauge’ theories of the extended Galilei group. I. The standard theory, Class. Quant. Grav. 12 (1995) 219 [gr-qc/9405046] [INSPIRE].

  31. G. Dautcourt, PostNewtonian extension of the Newton-Cartan theory, Class. Quant. Grav. 14 (1997) A109 [gr-qc/9610036] [INSPIRE].

  32. D. Van den Bleeken, Torsional Newton-Cartan gravity from the large c expansion of general relativity, Class. Quant. Grav. 34 (2017) 185004 [arXiv:1703.03459] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  33. D. Hansen, J. Hartong and N.A. Obers, Non-relativistic expansion of the Einstein-Hilbert Lagrangian, in 15th Marcel Grossmann Meeting on Recent Developments in Theoretical and Experimental General Relativity, Astrophysics and Relativistic Field Theories (MG15) Rome, Italy, July 1–7, 2018, 2019, arXiv:1905.13723 [INSPIRE].

  34. J. Gomis, J. Gomis and K. Kamimura, Non-relativistic superstrings: A new soluble sector of AdS5 × S5 , JHEP 12 (2005) 024 [hep-th/0507036] [INSPIRE].

    ADS  Google Scholar 

  35. J. Brugues, J. Gomis and K. Kamimura, Newton-Hooke algebras, non-relativistic branes and generalized pp-wave metrics, Phys. Rev. D 73 (2006) 085011 [hep-th/0603023] [INSPIRE].

  36. C. Batlle, J. Gomis and D. Not, Extended Galilean symmetries of non-relativistic strings, JHEP 02 (2017) 049 [arXiv:1611.00026] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  37. T. Harmark, J. Hartong, L. Menculini, N.A. Obers and G. Oling, Relating non-relativistic string theories, JHEP 11 (2019) 071 [arXiv:1907.01663] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  38. P. Concha, L. Ravera and E. Rodríguez, Three-dimensional exotic Newtonian gravity with cosmological constant, arXiv:1912.02836 [INSPIRE].

  39. F. Ali and L. Ravera, \( \mathcal{N} \)-extended Chern-Simons Carrollian supergravities in 2 + 1 spacetime dimensions, arXiv:1912.04172 [INSPIRE].

  40. S. Bonanos and J. Gomis, A Note on the Chevalley-Eilenberg Cohomology for the Galilei and Poincaré Algebras, J. Phys. A 42 (2009) 145206 [arXiv:0808.2243] [INSPIRE].

    ADS  MATH  Google Scholar 

  41. A. Medina and P. Revoy, Algèbres de lie et produit scalaire invariant, Annales Sci. Ecole Norm. Sup. 4e série, 18 (1985) 553.

  42. J.M. Figueroa-O’Farrill and S. Stanciu, On the structure of symmetric selfdual Lie algebras, J. Math. Phys. 37 (1996) 4121 [hep-th/9506152] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  43. J. Matulich, S. Prohazka and J. Salzer, Limits of three-dimensional gravity and metric kinematical Lie algebras in any dimension, JHEP 07 (2019) 118 [arXiv:1903.09165] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  44. O. Arratia, M.A. Martin and M.A. Olmo, Classical Systems and Representations of (2+1) Newton-Hooke Symmetries, math-ph/9903013.

  45. P.D. Alvarez, J. Gomis, K. Kamimura and M.S. Plyushchay, (2+1)D Exotic Newton-Hooke Symmetry, Duality and Projective Phase, Annals Phys. 322 (2007) 1556 [hep-th/0702014] [INSPIRE].

  46. J.-M. Lévy-Leblond, Galilei group and galilean invariance, in Group theory and its applications, Elsevier, (1971), pp. 221–299.

  47. Y. Brihaye, C. Gonera, S. Giller and P. Kosiński, Galilean invariance in (2+1)-dimensions, hep-th/9503046 [INSPIRE].

  48. J. Gomis and A. Kleinschmidt, On free Lie algebras and particles in electro-magnetic fields, JHEP 07 (2017) 085 [arXiv:1705.05854] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  49. E. Bergshoeff, J. Gomis, B. Rollier, J. Rosseel and T. ter Veldhuis, Carroll versus Galilei Gravity, JHEP 03 (2017) 165 [arXiv:1701.06156] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  50. A. Achucarro and P.K. Townsend, A Chern-Simons Action for Three-Dimensional anti-de Sitter Supergravity Theories, Phys. Lett. B 180 (1986) 89 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  51. E. Witten, (2+1)-Dimensional Gravity as an Exactly Soluble System, Nucl. Phys. B 311 (1988) 46 [INSPIRE].

  52. O. Coussaert, M. Henneaux and P. van Driel, The asymptotic dynamics of three-dimensional Einstein gravity with a negative cosmological constant, Class. Quant. Grav. 12 (1995) 2961 [gr-qc/9506019] [INSPIRE].

  53. M. Bañados, Three-dimensional quantum geometry and black holes, AIP Conf. Proc. 484 (1999) 147 [hep-th/9901148] [INSPIRE].

  54. S. Carlip, Conformal field theory, (2+1)-dimensional gravity and the BTZ black hole, Class. Quant. Grav. 22 (2005) R85 [gr-qc/0503022] [INSPIRE].

  55. J. Hartong, Y. Lei, N.A. Obers and G. Oling, Zooming in on AdS3/CFT2 near a BPS bound, JHEP 05 (2018) 016 [arXiv:1712.05794] [INSPIRE].

    ADS  Article  Google Scholar 

  56. L. Ravera, AdS Carroll Chern-Simons supergravity in 2 + 1 dimensions and its flat limit, Phys. Lett. B 795 (2019) 331 [arXiv:1905.00766] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  57. J. Hartong, Gauging the Carroll Algebra and Ultra-Relativistic Gravity, JHEP 08 (2015) 069 [arXiv:1505.05011] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  58. E. Bergshoeff, D. Grumiller, S. Prohazka and J. Rosseel, Three-dimensional Spin-3 Theories Based on General Kinematical Algebras, JHEP 01 (2017) 114 [arXiv:1612.02277] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  59. M. Henneaux, Geometry of Zero Signature Space-times, Bull. Soc. Math. Belg. 31 (1979) 47 [INSPIRE].

    MathSciNet  MATH  Google Scholar 

  60. C. Teitelboim, Quantum Mechanics of the Gravitational Field, Phys. Rev. D 25 (1982) 3159 [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  61. C.J. Isham, Some Quantum Field Theory Aspects of the Superspace Quantization of General Relativity, Proc. Roy. Soc. Lond. A 351 (1976) 209.

    ADS  MathSciNet  Google Scholar 

  62. M. Henneaux, M. Pilati and C. Teitelboim, Explicit Solution for the Zero Signature (Strong Coupling) Limit of the Propagation Amplitude in Quantum Gravity, Phys. Lett. 110B (1982) 123 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  63. E. Anderson, Strong coupled relativity without relativity, Gen. Rel. Grav. 36 (2004) 255 [gr-qc/0205118] [INSPIRE].

  64. M. Niedermaier, The gauge structure of strong coupling gravity, Class. Quant. Grav. 32 (2015) 015007 [INSPIRE].

  65. V.A. Belinsky, I.M. Khalatnikov and E.M. Lifshitz, Oscillatory approach to a singular point in the relativistic cosmology, Adv. Phys. 19 (1970) 525 [INSPIRE].

    ADS  Article  Google Scholar 

  66. V.a. Belinsky, I.m. Khalatnikov and E.m. Lifshitz, A General Solution of the Einstein Equations with a Time Singularity, Adv. Phys. 31 (1982) 639 [INSPIRE].

  67. T. Damour, M. Henneaux and H. Nicolai, Cosmological billiards, Class. Quant. Grav. 20 (2003) R145 [hep-th/0212256] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  68. G. Dautcourt, On the ultrarelativistic limit of general relativity, Acta Phys. Polon. B 29 (1998) 1047 [gr-qc/9801093] [INSPIRE].

  69. L. Donnay and C. Marteau, Carrollian Physics at the Black Hole Horizon, Class. Quant. Grav. 36 (2019) 165002 [arXiv:1903.09654] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  70. D. Grumiller and M. Riegler, Most general AdS3 boundary conditions, JHEP 10 (2016) 023 [arXiv:1608.01308] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  71. A. Campoleoni, Higher Spins in D = 2 + 1, Subnucl. Ser. 49 (2013) 385 [arXiv:1110.5841] [INSPIRE].

    MATH  Google Scholar 

  72. R. Schrader, The Maxwell group and the quantum theory of particles in classical homogeneous electromagnetic fields, Fortsch. Phys. 20 (1972) 701 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  73. S. Bonanos and J. Gomis, Infinite Sequence of Poincaré Group Extensions: Structure and Dynamics, J. Phys. A 43 (2010) 015201 [arXiv:0812.4140] [INSPIRE].

  74. P. Salgado-ReboLledó, The Maxwell group in 2+1 dimensions and its infinite-dimensional enhancements, JHEP 10 (2019) 039 [arXiv:1905.09421] [INSPIRE].

  75. L. Avilés, E. Frodden, J. Gomis, D. Hidalgo and J. Zanelli, Non-Relativistic Maxwell Chern-Simons Gravity, JHEP 05 (2018) 047 [arXiv:1802.08453] [INSPIRE].

  76. R. Andringa, E. Bergshoeff, J. Gomis and M. de Roo, ‘Stringy’ Newton-Cartan Gravity, Class. Quant. Grav. 29 (2012) 235020 [arXiv:1206.5176] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  77. L. Avilés, J. Gomis and D. Hidalgo, Stringy (Galilei) Newton-Hooke Chern-Simons Gravities, JHEP 09 (2019) 015 [arXiv:1905.13091] [INSPIRE].

  78. E. Bergshoeff, J. Gomis and Z. Yan, Nonrelativistic String Theory and T-duality, JHEP 11 (2018) 133 [arXiv:1806.06071] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  79. E.A. Bergshoeff, K.T. Grosvenor, C. Şimşek and Z. Yan, An Action for Extended String Newton-Cartan Gravity, JHEP 01 (2019) 178 [arXiv:1810.09387] [INSPIRE].

  80. E.A. Bergshoeff, J. Gomis, J. Rosseel, C. Şimşek and Z. Yan, String Theory and String Newton-Cartan Geometry, arXiv:1907.10668 [INSPIRE].

  81. D. Roychowdhury, Carroll membranes, JHEP 10 (2019) 258 [arXiv:1908.07280] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Axel Kleinschmidt.

Additional information

ArXiv ePrint: 1912.07564

Rights and permissions

Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gomis, J., Kleinschmidt, A., Palmkvist, J. et al. Newton-Hooke/Carrollian expansions of (A)dS and Chern-Simons gravity. J. High Energ. Phys. 2020, 9 (2020). https://doi.org/10.1007/JHEP02(2020)009

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP02(2020)009

Keywords

  • Classical Theories of Gravity
  • Space-Time Symmetries
  • Global Symmetries
  • p-branes