E. Inönü and E.P. Wigner, On the Contraction of groups and their represenations, Proc. Nat. Acad. Sci. 39 (1953) 510 [INSPIRE].
V. Bargmann, On unitary ray representations of continuous groups, Annals Math. 59 (1954) 1.
MathSciNet
Article
Google Scholar
J.-M. Lévy-Leblond, Group-theoretical foundations of classical mechanics: the lagrangian gauge problem, Commun. Math. Phys. 12 (1969) 64.
G. Marmo, G. Morandi, A. Simoni and E.C.G. Sudarshan, Quasiinvariance and Central Extensions, Phys. Rev. D 37 (1988) 2196 [INSPIRE].
ADS
Google Scholar
M. Hatsuda and M. Sakaguchi, Wess-Zumino term for the AdS superstring and generalized Inönü-Wigner contraction, Prog. Theor. Phys. 109 (2003) 853 [hep-th/0106114] [INSPIRE].
ADS
Article
Google Scholar
J.A. de Azcárraga, J.M. Izquierdo, M. Picón and O. Varela, Generating Lie and gauge free differential (super)algebras by expanding Maurer-Cartan forms and Chern-Simons supergravity, Nucl. Phys. B 662 (2003) 185 [hep-th/0212347] [INSPIRE].
F. Izaurieta, E. Rodríguez and P. Salgado, Expanding Lie (super)algebras through Abelian semigroups, J. Math. Phys. 47 (2006) 123512 [hep-th/0606215] [INSPIRE].
E. Bergshoeff, J.M. Izquierdo, T. Ortín and L. Romano, Lie Algebra Expansions and Actions for Non-Relativistic Gravity, JHEP 08 (2019) 048 [arXiv:1904.08304] [INSPIRE].
D. Hansen, J. Hartong and N.A. Obers, Action Principle for Newtonian Gravity, Phys. Rev. Lett. 122 (2019) 061106 [arXiv:1807.04765] [INSPIRE].
D. Hansen, J. Hartong and N.A. Obers, Gravity between Newton and Einstein, Int. J. Mod. Phys. D 28 (2019) 1944010 [arXiv:1904.05706] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
N. Ozdemir, M. Ozkan, O. Tunca and U. Zorba, Three-Dimensional Extended Newtonian (Super)Gravity, JHEP 05 (2019) 130 [arXiv:1903.09377] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
J. Gomis, A. Kleinschmidt, J. Palmkvist and P. Salgado-ReboLledó, Symmetries of post-Newtonian expansions, arXiv:1910.13560 [INSPIRE].
N. González, G. Rubio, P. Salgado and S. Salgado, Generalized Galilean algebras and Newtonian gravity, Phys. Lett. B 755 (2016) 433 [arXiv:1604.06313] [INSPIRE].
D.M. Peñafiel and L. Ravera, Infinite S-Expansion with Ideal Subtraction and Some Applications, J. Math. Phys. 58 (2017) 081701 [arXiv:1611.05812] [INSPIRE].
J.A. de Azcárraga, D. Gútiez and J.M. Izquierdo, Extended D = 3 Bargmann supergravity from a Lie algebra expansion, arXiv:1904.12786 [INSPIRE].
D.M. Peñafiel and P. Salgado-Rebolledo, Non-relativistic symmetries in three space-time dimensions and the Nappi-Witten algebra, Phys. Lett. B 798 (2019) 135005 [arXiv:1906.02161].
P. Concha and E. Rodríguez, Non-Relativistic Gravity Theory based on an Enlargement of the Extended Bargmann Algebra, JHEP 07 (2019) 085 [arXiv:1906.00086] [INSPIRE].
J. Gomis, A. Kleinschmidt and J. Palmkvist, Galilean free Lie algebras, JHEP 09 (2019) 109 [arXiv:1907.00410] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
H. Bacry and J. Lévy-Leblond, Possible kinematics, J. Math. Phys. 9 (1968) 1605 [INSPIRE].
J.-R. Derome and J.-G. Dubois, Hooke’s symmetries and nonrelativistic cosmological kinematics. I, Nuovo Cim. B 9 (1972) 351.
C. Duval, G.W. Gibbons, P.A. Horvathy and P.M. Zhang, Carroll versus Newton and Galilei: two dual non-Einsteinian concepts of time, Class. Quant. Grav. 31 (2014) 085016 [arXiv:1402.0657] [INSPIRE].
T.E. Clark and T. ter Veldhuis, AdS-Carroll Branes, J. Math. Phys. 57 (2016) 112303 [arXiv:1605.05484] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
R. Basu and U.N. Chowdhury, Dynamical structure of Carrollian Electrodynamics, JHEP 04 (2018) 111 [arXiv:1802.09366] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
A. Barducci, R. Casalbuoni and J. Gomis, Confined dynamical systems with Carroll and Galilei symmetries, Phys. Rev. D 98 (2018) 085018 [arXiv:1804.10495] [INSPIRE].
G. Papageorgiou and B.J. Schroers, Galilean quantum gravity with cosmological constant and the extended q-Heisenberg algebra, JHEP 11 (2010) 020 [arXiv:1008.0279] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
J. Hartong, Y. Lei and N.A. Obers, Nonrelativistic Chern-Simons theories and three-dimensional Hořava-Lifshitz gravity, Phys. Rev. D 94 (2016) 065027 [arXiv:1604.08054] [INSPIRE].
G. Papageorgiou and B.J. Schroers, A Chern-Simons approach to Galilean quantum gravity in 2+1 dimensions, JHEP 11 (2009) 009 [arXiv:0907.2880] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
E.A. Bergshoeff and J. Rosseel, Three-Dimensional Extended Bargmann Supergravity, Phys. Rev. Lett. 116 (2016) 251601 [arXiv:1604.08042] [INSPIRE].
ADS
Article
Google Scholar
G. Dautcourt, On the Newtonian limit of general relativity, Acta Phys. Polon. B 21 (1990) 755.
MathSciNet
Google Scholar
R. De Pietri, L. Lusanna and M. Pauri, Standard and generalized Newtonian gravities as ‘gauge’ theories of the extended Galilei group. I. The standard theory, Class. Quant. Grav. 12 (1995) 219 [gr-qc/9405046] [INSPIRE].
G. Dautcourt, PostNewtonian extension of the Newton-Cartan theory, Class. Quant. Grav. 14 (1997) A109 [gr-qc/9610036] [INSPIRE].
D. Van den Bleeken, Torsional Newton-Cartan gravity from the large c expansion of general relativity, Class. Quant. Grav. 34 (2017) 185004 [arXiv:1703.03459] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
D. Hansen, J. Hartong and N.A. Obers, Non-relativistic expansion of the Einstein-Hilbert Lagrangian, in 15th Marcel Grossmann Meeting on Recent Developments in Theoretical and Experimental General Relativity, Astrophysics and Relativistic Field Theories (MG15) Rome, Italy, July 1–7, 2018, 2019, arXiv:1905.13723 [INSPIRE].
J. Gomis, J. Gomis and K. Kamimura, Non-relativistic superstrings: A new soluble sector of AdS5 × S5 , JHEP 12 (2005) 024 [hep-th/0507036] [INSPIRE].
ADS
Google Scholar
J. Brugues, J. Gomis and K. Kamimura, Newton-Hooke algebras, non-relativistic branes and generalized pp-wave metrics, Phys. Rev. D 73 (2006) 085011 [hep-th/0603023] [INSPIRE].
C. Batlle, J. Gomis and D. Not, Extended Galilean symmetries of non-relativistic strings, JHEP 02 (2017) 049 [arXiv:1611.00026] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
T. Harmark, J. Hartong, L. Menculini, N.A. Obers and G. Oling, Relating non-relativistic string theories, JHEP 11 (2019) 071 [arXiv:1907.01663] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
P. Concha, L. Ravera and E. Rodríguez, Three-dimensional exotic Newtonian gravity with cosmological constant, arXiv:1912.02836 [INSPIRE].
F. Ali and L. Ravera, \( \mathcal{N} \)-extended Chern-Simons Carrollian supergravities in 2 + 1 spacetime dimensions, arXiv:1912.04172 [INSPIRE].
S. Bonanos and J. Gomis, A Note on the Chevalley-Eilenberg Cohomology for the Galilei and Poincaré Algebras, J. Phys. A 42 (2009) 145206 [arXiv:0808.2243] [INSPIRE].
ADS
MATH
Google Scholar
A. Medina and P. Revoy, Algèbres de lie et produit scalaire invariant, Annales Sci. Ecole Norm. Sup. 4e série, 18 (1985) 553.
J.M. Figueroa-O’Farrill and S. Stanciu, On the structure of symmetric selfdual Lie algebras, J. Math. Phys. 37 (1996) 4121 [hep-th/9506152] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
J. Matulich, S. Prohazka and J. Salzer, Limits of three-dimensional gravity and metric kinematical Lie algebras in any dimension, JHEP 07 (2019) 118 [arXiv:1903.09165] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
O. Arratia, M.A. Martin and M.A. Olmo, Classical Systems and Representations of (2+1) Newton-Hooke Symmetries, math-ph/9903013.
P.D. Alvarez, J. Gomis, K. Kamimura and M.S. Plyushchay, (2+1)D Exotic Newton-Hooke Symmetry, Duality and Projective Phase, Annals Phys. 322 (2007) 1556 [hep-th/0702014] [INSPIRE].
J.-M. Lévy-Leblond, Galilei group and galilean invariance, in Group theory and its applications, Elsevier, (1971), pp. 221–299.
Y. Brihaye, C. Gonera, S. Giller and P. Kosiński, Galilean invariance in (2+1)-dimensions, hep-th/9503046 [INSPIRE].
J. Gomis and A. Kleinschmidt, On free Lie algebras and particles in electro-magnetic fields, JHEP 07 (2017) 085 [arXiv:1705.05854] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
E. Bergshoeff, J. Gomis, B. Rollier, J. Rosseel and T. ter Veldhuis, Carroll versus Galilei Gravity, JHEP 03 (2017) 165 [arXiv:1701.06156] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
A. Achucarro and P.K. Townsend, A Chern-Simons Action for Three-Dimensional anti-de Sitter Supergravity Theories, Phys. Lett. B 180 (1986) 89 [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
E. Witten, (2+1)-Dimensional Gravity as an Exactly Soluble System, Nucl. Phys. B 311 (1988) 46 [INSPIRE].
O. Coussaert, M. Henneaux and P. van Driel, The asymptotic dynamics of three-dimensional Einstein gravity with a negative cosmological constant, Class. Quant. Grav. 12 (1995) 2961 [gr-qc/9506019] [INSPIRE].
M. Bañados, Three-dimensional quantum geometry and black holes, AIP Conf. Proc. 484 (1999) 147 [hep-th/9901148] [INSPIRE].
S. Carlip, Conformal field theory, (2+1)-dimensional gravity and the BTZ black hole, Class. Quant. Grav. 22 (2005) R85 [gr-qc/0503022] [INSPIRE].
J. Hartong, Y. Lei, N.A. Obers and G. Oling, Zooming in on AdS3/CFT2 near a BPS bound, JHEP 05 (2018) 016 [arXiv:1712.05794] [INSPIRE].
ADS
Article
Google Scholar
L. Ravera, AdS Carroll Chern-Simons supergravity in 2 + 1 dimensions and its flat limit, Phys. Lett. B 795 (2019) 331 [arXiv:1905.00766] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
J. Hartong, Gauging the Carroll Algebra and Ultra-Relativistic Gravity, JHEP 08 (2015) 069 [arXiv:1505.05011] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
E. Bergshoeff, D. Grumiller, S. Prohazka and J. Rosseel, Three-dimensional Spin-3 Theories Based on General Kinematical Algebras, JHEP 01 (2017) 114 [arXiv:1612.02277] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
M. Henneaux, Geometry of Zero Signature Space-times, Bull. Soc. Math. Belg. 31 (1979) 47 [INSPIRE].
MathSciNet
MATH
Google Scholar
C. Teitelboim, Quantum Mechanics of the Gravitational Field, Phys. Rev. D 25 (1982) 3159 [INSPIRE].
ADS
MathSciNet
Google Scholar
C.J. Isham, Some Quantum Field Theory Aspects of the Superspace Quantization of General Relativity, Proc. Roy. Soc. Lond. A 351 (1976) 209.
ADS
MathSciNet
Google Scholar
M. Henneaux, M. Pilati and C. Teitelboim, Explicit Solution for the Zero Signature (Strong Coupling) Limit of the Propagation Amplitude in Quantum Gravity, Phys. Lett. 110B (1982) 123 [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
E. Anderson, Strong coupled relativity without relativity, Gen. Rel. Grav. 36 (2004) 255 [gr-qc/0205118] [INSPIRE].
M. Niedermaier, The gauge structure of strong coupling gravity, Class. Quant. Grav. 32 (2015) 015007 [INSPIRE].
V.A. Belinsky, I.M. Khalatnikov and E.M. Lifshitz, Oscillatory approach to a singular point in the relativistic cosmology, Adv. Phys. 19 (1970) 525 [INSPIRE].
ADS
Article
Google Scholar
V.a. Belinsky, I.m. Khalatnikov and E.m. Lifshitz, A General Solution of the Einstein Equations with a Time Singularity, Adv. Phys. 31 (1982) 639 [INSPIRE].
T. Damour, M. Henneaux and H. Nicolai, Cosmological billiards, Class. Quant. Grav. 20 (2003) R145 [hep-th/0212256] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
G. Dautcourt, On the ultrarelativistic limit of general relativity, Acta Phys. Polon. B 29 (1998) 1047 [gr-qc/9801093] [INSPIRE].
L. Donnay and C. Marteau, Carrollian Physics at the Black Hole Horizon, Class. Quant. Grav. 36 (2019) 165002 [arXiv:1903.09654] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
D. Grumiller and M. Riegler, Most general AdS3 boundary conditions, JHEP 10 (2016) 023 [arXiv:1608.01308] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
A. Campoleoni, Higher Spins in D = 2 + 1, Subnucl. Ser. 49 (2013) 385 [arXiv:1110.5841] [INSPIRE].
MATH
Google Scholar
R. Schrader, The Maxwell group and the quantum theory of particles in classical homogeneous electromagnetic fields, Fortsch. Phys. 20 (1972) 701 [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
S. Bonanos and J. Gomis, Infinite Sequence of Poincaré Group Extensions: Structure and Dynamics, J. Phys. A 43 (2010) 015201 [arXiv:0812.4140] [INSPIRE].
P. Salgado-ReboLledó, The Maxwell group in 2+1 dimensions and its infinite-dimensional enhancements, JHEP 10 (2019) 039 [arXiv:1905.09421] [INSPIRE].
L. Avilés, E. Frodden, J. Gomis, D. Hidalgo and J. Zanelli, Non-Relativistic Maxwell Chern-Simons Gravity, JHEP 05 (2018) 047 [arXiv:1802.08453] [INSPIRE].
R. Andringa, E. Bergshoeff, J. Gomis and M. de Roo, ‘Stringy’ Newton-Cartan Gravity, Class. Quant. Grav. 29 (2012) 235020 [arXiv:1206.5176] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
L. Avilés, J. Gomis and D. Hidalgo, Stringy (Galilei) Newton-Hooke Chern-Simons Gravities, JHEP 09 (2019) 015 [arXiv:1905.13091] [INSPIRE].
E. Bergshoeff, J. Gomis and Z. Yan, Nonrelativistic String Theory and T-duality, JHEP 11 (2018) 133 [arXiv:1806.06071] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
E.A. Bergshoeff, K.T. Grosvenor, C. Şimşek and Z. Yan, An Action for Extended String Newton-Cartan Gravity, JHEP 01 (2019) 178 [arXiv:1810.09387] [INSPIRE].
E.A. Bergshoeff, J. Gomis, J. Rosseel, C. Şimşek and Z. Yan, String Theory and String Newton-Cartan Geometry, arXiv:1907.10668 [INSPIRE].
D. Roychowdhury, Carroll membranes, JHEP 10 (2019) 258 [arXiv:1908.07280] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar