Abstract
We introduce the tools of intersection theory to the study of Feynman integrals, which allows for a new way of projecting integrals onto a basis. In order to illustrate this technique, we consider the Baikov representation of maximal cuts in arbitrary space-time dimension. We introduce a minimal basis of differential forms with logarithmic singularities on the boundaries of the corresponding integration cycles. We give an algorithm for computing a basis decomposition of an arbitrary maximal cut using so-called intersection numbers and describe two alternative ways of computing them. Furthermore, we show how to obtain Pfaffian systems of differential equations for the basis integrals using the same technique. All the steps are illustrated on the example of a two-loop non-planar triangle diagram with a massive loop.
Article PDF
Similar content being viewed by others
Avoid common mistakes on your manuscript.
References
K.G. Chetyrkin and F.V. Tkachov, Integration by parts: the algorithm to calculate β-functions in 4 loops, Nucl. Phys. B 192 (1981) 159 [INSPIRE].
G. Barucchi and G. Ponzano, Differential equations for one-loop generalized Feynman integrals, J. Math. Phys. 14 (1973) 396 [INSPIRE].
A.V. Kotikov, Differential equations method: new technique for massive Feynman diagrams calculation, Phys. Lett. B 254 (1991) 158 [INSPIRE].
A.V. Kotikov, Differential equation method: the calculation of N point Feynman diagrams, Phys. Lett. B 267 (1991) 123 [Erratum ibid. B 295 (1992) 409] [INSPIRE].
Z. Bern, L.J. Dixon and D.A. Kosower, Dimensionally regulated pentagon integrals, Nucl. Phys. B 412 (1994) 751 [hep-ph/9306240] [INSPIRE].
E. Remiddi, Differential equations for Feynman graph amplitudes, Nuovo Cim. A 110 (1997) 1435 [hep-th/9711188] [INSPIRE].
T. Gehrmann and E. Remiddi, Differential equations for two loop four point functions, Nucl. Phys. B 580 (2000) 485 [hep-ph/9912329] [INSPIRE].
J.M. Henn, Multiloop integrals in dimensional regularization made simple, Phys. Rev. Lett. 110 (2013) 251601 [arXiv:1304.1806] [INSPIRE].
J.M. Henn, Lectures on differential equations for Feynman integrals, J. Phys. A 48 (2015) 153001 [arXiv:1412.2296] [INSPIRE].
S. Laporta, High precision calculation of multiloop Feynman integrals by difference equations, Int. J. Mod. Phys. A 15 (2000) 5087 [hep-ph/0102033] [INSPIRE].
S. Laporta, Calculation of Feynman integrals by difference equations, Acta Phys. Polon. B 34 (2003) 5323 [hep-ph/0311065] [INSPIRE].
O.V. Tarasov, Connection between Feynman integrals having different values of the space-time dimension, Phys. Rev. D 54 (1996) 6479 [hep-th/9606018] [INSPIRE].
R.N. Lee, Space-time dimensionality D as complex variable: calculating loop integrals using dimensional recurrence relation and analytical properties with respect to D, Nucl. Phys. B 830 (2010) 474 [arXiv:0911.0252] [INSPIRE].
V.A. Smirnov, Evaluating Feynman integrals, Springer Tracts Mod. Phys. 211 (2004) 1 [INSPIRE].
A.G. Grozin, Integration by parts: an introduction, Int. J. Mod. Phys. A 26 (2011) 2807 [arXiv:1104.3993] [INSPIRE].
Y. Zhang, Lecture notes on multi-loop integral reduction and applied algebraic geometry, arXiv:1612.02249 [INSPIRE].
A. von Manteuffel and R.M. Schabinger, A novel approach to integration by parts reduction, Phys. Lett. B 744 (2015) 101 [arXiv:1406.4513] [INSPIRE].
T. Peraro, Scattering amplitudes over finite fields and multivariate functional reconstruction, JHEP 12 (2016) 030 [arXiv:1608.01902] [INSPIRE].
J. Böhm, A. Georgoudis, K.J. Larsen, H. Schönemann and Y. Zhang, Complete integration-by-parts reductions of the non-planar hexagon-box via module intersections, JHEP 09 (2018) 024 [arXiv:1805.01873] [INSPIRE].
D.A. Kosower, Direct solution of integration-by-parts systems, Phys. Rev. D 98 (2018) 025008 [arXiv:1804.00131] [INSPIRE].
H.A. Chawdhry, M.A. Lim and A. Mitov, Two-loop five-point massless QCD amplitudes within the IBP approach, arXiv:1805.09182 [INSPIRE].
A. von Manteuffel and C. Studerus, Reduze 2 — distributed Feynman integral reduction, arXiv:1201.4330 [INSPIRE].
R.N. Lee, Presenting LiteRed: a tool for the Loop InTEgrals REDuction, arXiv:1212.2685 [INSPIRE].
A.V. Smirnov, Algorithm FIRE — Feynman Integral REduction, JHEP 10 (2008) 107 [arXiv:0807.3243] [INSPIRE].
P. Maierhöfer, J. Usovitsch and P. Uwer, Kira — a Feynman integral reduction program, Comput. Phys. Commun. 230 (2018) 99 [arXiv:1705.05610] [INSPIRE].
A. Georgoudis, K.J. Larsen and Y. Zhang, Azurite: an algebraic geometry based package for finding bases of loop integrals, Comput. Phys. Commun. 221 (2017) 203 [arXiv:1612.04252] [INSPIRE].
T. Gehrmann, J.M. Henn and N.A. Lo Presti, Analytic form of the two-loop planar five-gluon all-plus-helicity amplitude in QCD, Phys. Rev. Lett. 116 (2016) 062001 [Erratum ibid. 116 (2016) 189903] [arXiv:1511.05409] [INSPIRE].
S. Laporta, High-precision calculation of the 4-loop contribution to the electron g-2 in QED, Phys. Lett. B 772 (2017) 232 [arXiv:1704.06996] [INSPIRE].
S. Badger, C. Brønnum-Hansen, H.B. Hartanto and T. Peraro, First look at two-loop five-gluon scattering in QCD, Phys. Rev. Lett. 120 (2018) 092001 [arXiv:1712.02229] [INSPIRE].
S. Abreu, F. Febres Cordero, H. Ita, B. Page and V. Sotnikov, Planar two-loop five-parton amplitudes from numerical unitarity, JHEP 11 (2018) 116 [arXiv:1809.09067] [INSPIRE].
K. Aomoto and M. Kita, Theory of hypergeometric functions, Springer, Tokyo, Japan (2011).
P.A. Baikov, Explicit solutions of the multiloop integral recurrence relations and its application, Nucl. Instrum. Meth. A 389 (1997) 347 [hep-ph/9611449] [INSPIRE].
R.N. Lee and A.A. Pomeransky, Critical points and number of master integrals, JHEP 11 (2013) 165 [arXiv:1308.6676] [INSPIRE].
M. Marcolli, Motivic renormalization and singularities, Clay Math. Proc. 11 (2010) 409 [arXiv:0804.4824] [INSPIRE].
M. Marcolli, Feynman motives, World Scientific, Singapore (2010).
T. Bitoun, C. Bogner, R.P. Klausen and E. Panzer, Feynman integral relations from parametric annihilators, Lett. Math. Phys. 109 (2019) 497 [arXiv:1712.09215] [INSPIRE].
K.J. Larsen and Y. Zhang, Integration-by-parts reductions from unitarity cuts and algebraic geometry, Phys. Rev. D 93 (2016) 041701 [arXiv:1511.01071] [INSPIRE].
J. Bosma, K.J. Larsen and Y. Zhang, Differential equations for loop integrals in Baikov representation, Phys. Rev. D 97 (2018) 105014 [arXiv:1712.03760] [INSPIRE].
H. Frellesvig and C.G. Papadopoulos, Cuts of Feynman integrals in Baikov representation, JHEP 04 (2017) 083 [arXiv:1701.07356] [INSPIRE].
M. Zeng, Differential equations on unitarity cut surfaces, JHEP 06 (2017) 121 [arXiv:1702.02355] [INSPIRE].
J. Bosma, M. Sogaard and Y. Zhang, Maximal cuts in arbitrary dimension, JHEP 08 (2017) 051 [arXiv:1704.04255] [INSPIRE].
M. Harley, F. Moriello and R.M. Schabinger, Baikov-Lee representations of cut Feynman integrals, JHEP 06 (2017) 049 [arXiv:1705.03478] [INSPIRE].
M. Kita and M. Yoshida, Intersection theory for twisted cycles, Math. Nachr. 166 (1994) 287.
K. Cho and K. Matsumoto, Intersection theory for twisted cohomologies and twisted Riemann’s period relations I, Nagoya Math. J. 139 (1995) 67.
S. Mizera, Scattering amplitudes from intersection theory, Phys. Rev. Lett. 120 (2018) 141602 [arXiv:1711.00469] [INSPIRE].
S. Abreu, R. Britto, C. Duhr and E. Gardi, Algebraic structure of cut Feynman integrals and the diagrammatic coaction, Phys. Rev. Lett. 119 (2017) 051601 [arXiv:1703.05064] [INSPIRE].
R.N. Lee and V.A. Smirnov, The dimensional recurrence and analyticity method for multicomponent master integrals: using unitarity cuts to construct homogeneous solutions, JHEP 12 (2012) 104 [arXiv:1209.0339] [INSPIRE].
E. Remiddi and L. Tancredi, Differential equations and dispersion relations for Feynman amplitudes. The two-loop massive sunrise and the kite integral, Nucl. Phys. B 907 (2016) 400 [arXiv:1602.01481] [INSPIRE].
A. Primo and L. Tancredi, On the maximal cut of Feynman integrals and the solution of their differential equations, Nucl. Phys. B 916 (2017) 94 [arXiv:1610.08397] [INSPIRE].
A. Primo and L. Tancredi, Maximal cuts and differential equations for Feynman integrals. An application to the three-loop massive banana graph, Nucl. Phys. B 921 (2017) 316 [arXiv:1704.05465] [INSPIRE].
S. Laporta and E. Remiddi, Analytic treatment of the two loop equal mass sunrise graph, Nucl. Phys. B 704 (2005) 349 [hep-ph/0406160] [INSPIRE].
A. von Manteuffel and L. Tancredi, A non-planar two-loop three-point function beyond multiple polylogarithms, JHEP 06 (2017) 127 [arXiv:1701.05905] [INSPIRE].
L. Adams, E. Chaubey and S. Weinzierl, Analytic results for the planar double box integral relevant to top-pair production with a closed top loop, JHEP 10 (2018) 206 [arXiv:1806.04981] [INSPIRE].
M. Argeri et al., Magnus and Dyson series for master integrals, JHEP 03 (2014) 082 [arXiv:1401.2979] [INSPIRE].
L. Adams, E. Chaubey and S. Weinzierl, Simplifying differential equations for multiscale Feynman integrals beyond multiple polylogarithms, Phys. Rev. Lett. 118 (2017) 141602 [arXiv:1702.04279] [INSPIRE].
J. Gluza, K. Kajda and D.A. Kosower, Towards a basis for planar two-loop integrals, Phys. Rev. D 83 (2011) 045012 [arXiv:1009.0472] [INSPIRE].
E. Remiddi and L. Tancredi, Schouten identities for Feynman graph amplitudes; the master integrals for the two-loop massive sunrise graph, Nucl. Phys. B 880 (2014) 343 [arXiv:1311.3342] [INSPIRE].
R.N. Lee, Calculating multiloop integrals using dimensional recurrence relation and D-analyticity, Nucl. Phys. Proc. Suppl. 205-206 (2010) 135 [arXiv:1007.2256] [INSPIRE].
K. Aomoto, Les équations aux différences linéaires et les intégrales des fonctions multiformes (in French), J. Fac. Sci. Univ. Tokyo Sect. IA 22 (1975) 271.
I.M. Gelfand, General theory of hypergeometric functions, Dokl. Akad. Nauk SSSR 288 (1986) 14.
J. Milnor, Morse theory, Ann. Math. Stud. 51, Princeton University Press, Princeton, NJ, U.S.A. (2016).
K. Aomoto, On the structure of integrals of power product of linear functions, Sci. Papers College Gen. Ed. Univ. Tokyo 27 (1977) 49.
K. Saito, Theory of logarithmic differential forms and logarithmic vector fields, J. Fac. Sci. Univ. Tokyo 27 (1981) 265.
K. Aomoto, M. Kita, P. Orlik and H. Terao, Twisted de Rham cohomology groups of logarithmic forms, Adv. Math. 128 (1997) 119.
P. Orlik and H. Terao, Arrangements of hyperplanes, Springer, Berlin Heidelberg, Germany (1992).
K. Aomoto and Y. Machida, Double filtration of twisted logarithmic complex and Gauss-Manin connection, J. Math. Soc. Jpn. 67 (2015) 609.
N. Arkani-Hamed, Y. Bai and T. Lam, Positive geometries and canonical forms, JHEP 11 (2017) 039 [arXiv:1703.04541] [INSPIRE].
M. Kita and M. Yoshida, Intersection theory for twisted cycles II — degenerate arrangements, Math. Nachr. 168 (2006) 171.
K. Matsumoto, Quadratic identities for hypergeometric series of type (k, l), Kyushu J. Math. 48 (1994) 335.
K. Cho, K. Mimachi and M. Yoshida, A hypergeometric integral attached to the configuration of the mirrors of the reflection group S N+2 acting on P n, Kyushu J. Math. 49 (1995) 11.
K. Matsumoto, Intersection numbers for 1-forms associated with confluent hypergeometric functions, Funkcial. Ekvac. 41 (1998) 291.
H. Majima, K. Matsumoto and N. Takayama, Quadratic relations for confluent hypergeometric functions, Tohoku Math. J. 52 (2000) 489.
K. Ohara, Y. Sugiki and N. Takayama, Quadratic relations for generalized hypergeometric functions p F p−1, Funkcial. Ekvac. 46 (2003) 213.
M. Yoshida, Hypergeometric functions, my love, Vieweg+Teubner Verlag, Wiesbaden, Germany (1997).
Y. Goto, Twisted cycles and twisted period relations for Lauricella’s hypergeometric function F C, Int. J. Math. 24 (2013) 1350094 [arXiv:1308.5535].
Y. Goto, Intersection numbers and twisted period relations for the generalized hypergeometric function m+1 F m, Kyushu J. Math. 69 (2015) 203.
Y. Goto and K. Matsumoto, The monodromy representation and twisted period relations for Appell’s hypergeometric function f 4, Nagoya Math. J. 217 (2015) 61.
Y. Goto, Twisted period relations for Lauricella’s hypergeometric functions F A, Osaka J. Math. 52 (2015) 861.
K. Matsumoto, Monodromy and Pfaffian of Lauricella’s F D in terms of the intersection forms of twisted (co)homology groups, Kyushu J. Math. 67 (2013) 367.
Y. Goto, Contiguity relations of Lauricella’s F D revisited, Tohoku Math. J. 69 (2017) 287.
S. Mizera, Combinatorics and topology of Kawai-Lewellen-Tye relations, JHEP 08 (2017) 097 [arXiv:1706.08527] [INSPIRE].
K. Matsumoto, Relative twisted homology and cohomology groups associated with Lauricella’s F D, arXiv:1804.00366.
K. Matsumoto, Intersection numbers for logarithmic k-forms, Osaka J. Math. 35 (1998) 873.
K. Ohara, Intersection numbers of twisted cohomology groups associated with Selberg-type integrals, (1998).
P. Deligne and G.D. Mostow, Monodromy of hypergeometric functions and non-lattice integral monodromy, Publ. Math. I.H.É.S. 63 (1986) 5.
R.N. Lee, Reducing differential equations for multiloop master integrals, JHEP 04 (2015) 108 [arXiv:1411.0911] [INSPIRE].
C.G. Papadopoulos, Simplified differential equations approach for master integrals, JHEP 07 (2014) 088 [arXiv:1401.6057] [INSPIRE].
J. Broedel, C. Duhr, F. Dulat and L. Tancredi, Elliptic polylogarithms and iterated integrals on elliptic curves. Part I: general formalism, JHEP 05 (2018) 093 [arXiv:1712.07089] [INSPIRE].
K. Matsumoto, Relative twisted homology and cohomology groups associated with Lauricella’s F D, arXiv:1804.00366.
Open Access
This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.
Author information
Authors and Affiliations
Corresponding author
Additional information
ArXiv ePrint: 1810.03818
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.
The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit https://creativecommons.org/licenses/by/4.0/.
About this article
Cite this article
Mastrolia, P., Mizera, S. Feynman integrals and intersection theory. J. High Energ. Phys. 2019, 139 (2019). https://doi.org/10.1007/JHEP02(2019)139
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1007/JHEP02(2019)139