LIGO Scientific and Virgo collaborations, Observation of gravitational waves from a binary black hole merger, Phys. Rev. Lett.
116 (2016) 061102 [arXiv:1602.03837] [INSPIRE].
LIGO Scientific and Virgo collaborations, GW151226: observation of gravitational waves from a 22-solar-mass binary black hole coalescence, Phys. Rev. Lett.
116 (2016) 241103 [arXiv:1606.04855] [INSPIRE].
LIGO Scientific and Virgo collaborations, GW170817: observation of gravitational waves from a binary neutron star inspiral, Phys. Rev. Lett.
119 (2017) 161101 [arXiv:1710.05832] [INSPIRE].
S. Endlich, V. Gorbenko, J. Huang and L. Senatore, An effective formalism for testing extensions to general relativity with gravitational waves, JHEP
09 (2017) 122 [arXiv:1704.01590] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
I.Z. Rothstein, TASI lectures on effective field theories, hep-ph/0308266 [INSPIRE].
E. Berti, V. Cardoso and C.M. Will, On gravitational-wave spectroscopy of massive black holes with the space interferometer LISA, Phys. Rev.
D 73 (2006) 064030 [gr-qc/0512160] [INSPIRE].
E. Berti, K. Yagi, H. Yang and N. Yunes, Extreme gravity tests with gravitational waves from compact binary coalescences: (II) ringdown, Gen. Rel. Grav.
50 (2018) 49 [arXiv:1801.03587] [INSPIRE].
ADS
Article
MATH
Google Scholar
S. Bhattacharyya and S. Shankaranarayanan, Quasinormal modes as a distinguisher between general relativity and f (R) gravity, Phys. Rev.
D 96 (2017) 064044 [arXiv:1704.07044] [INSPIRE].
S. Bhattacharyya and S. Shankaranarayanan, Quasinormal modes as a distinguisher between general relativity and f (R) gravity: charged black-holes, Eur. Phys. J.
C 78 (2018) 737 [arXiv:1803.07576] [INSPIRE].
E. Barausse, V. Cardoso and P. Pani, Can environmental effects spoil precision gravitational-wave astrophysics?, Phys. Rev.
D 89 (2014) 104059 [arXiv:1404.7149] [INSPIRE].
E. Winstanley, Dressing a black hole with non-minimally coupled scalar field hair, Class. Quant. Grav.
22 (2005) 2233 [gr-qc/0501096] [INSPIRE].
J.D. Bekenstein, Nonexistence of baryon number for static black holes, Phys. Rev.
D 5 (1972) 1239 [INSPIRE].
J.D. Bekenstein, Novel “no-scalar-hair” theorem for black holes, Phys. Rev.
D 51 (1995) R6608 [INSPIRE].
L. Hui and A. Nicolis, No-hair theorem for the Galileon, Phys. Rev. Lett.
110 (2013) 241104 [arXiv:1202.1296] [INSPIRE].
ADS
Article
Google Scholar
H. Dennhardt and O. Lechtenfeld, Scalar deformations of Schwarzschild holes and their stability, Int. J. Mod. Phys.
A 13 (1998) 741 [gr-qc/9612062] [INSPIRE].
T.P. Sotiriou and S.-Y. Zhou, Black hole hair in generalized scalar-tensor gravity: an explicit example, Phys. Rev.
D 90 (2014) 124063 [arXiv:1408.1698] [INSPIRE].
G. Antoniou, A. Bakopoulos and P. Kanti, Black-hole solutions with scalar hair in Einstein-scalar-Gauss-Bonnet theories, Phys. Rev.
D 97 (2018) 084037 [arXiv:1711.07431] [INSPIRE].
D.D. Doneva and S.S. Yazadjiev, New Gauss-Bonnet black holes with curvature-induced scalarization in extended scalar-tensor theories, Phys. Rev. Lett.
120 (2018) 131103 [arXiv:1711.01187] [INSPIRE].
ADS
Article
Google Scholar
H.O. Silva, J. Sakstein, L. Gualtieri, T.P. Sotiriou and E. Berti, Spontaneous scalarization of black holes and compact stars from a Gauss-Bonnet coupling, Phys. Rev. Lett.
120 (2018) 131104 [arXiv:1711.02080] [INSPIRE].
ADS
Article
Google Scholar
T. Jacobson, Primordial black hole evolution in tensor scalar cosmology, Phys. Rev. Lett.
83 (1999) 2699 [astro-ph/9905303] [INSPIRE].
E. Berti, V. Cardoso, L. Gualtieri, M. Horbatsch and U. Sperhake, Numerical simulations of single and binary black holes in scalar-tensor theories: circumventing the no-hair theorem, Phys. Rev.
D 87 (2013) 124020 [arXiv:1304.2836] [INSPIRE].
M.W. Horbatsch and C.P. Burgess, Cosmic black-hole hair growth and quasar OJ 287, JCAP
05 (2012) 010 [arXiv:1111.4009] [INSPIRE].
C.A.R. Herdeiro and E. Radu, Asymptotically flat black holes with scalar hair: a review, Int. J. Mod. Phys.
D 24 (2015) 1542014 [arXiv:1504.08209] [INSPIRE].
O.J. Tattersall, P.G. Ferreira and M. Lagos, Speed of gravitational waves and black hole hair, Phys. Rev.
D 97 (2018) 084005 [arXiv:1802.08606] [INSPIRE].
LIGO Scientific, Virgo, Fermi-GBM and INTEGRAL collaborations, Gravitational waves and gamma-rays from a binary neutron star merger: GW170817 and GRB170817A, Astrophys. J.
848 (2017) L13 [arXiv:1710.05834] [INSPIRE].
C. de Rham and S. Melville, Gravitational rainbows: LIGO and dark energy at its cutoff, Phys. Rev. Lett.
121 (2018) 221101 [arXiv:1806.09417] [INSPIRE].
T.P. Sotiriou, Black holes and scalar fields, Class. Quant. Grav.
32 (2015) 214002 [arXiv:1505.00248] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
J.L. Blázquez-Salcedo, F.S. Khoo and J. Kunz, Quasinormal modes of Einstein-Gauss-Bonnet-dilaton black holes, Phys. Rev.
D 96 (2017) 064008 [arXiv:1706.03262] [INSPIRE].
LIGO Scientific and Virgo collaborations, Search for tensor, vector and scalar polarizations in the stochastic gravitational-wave background, Phys. Rev. Lett.
120 (2018) 201102 [arXiv:1802.10194] [INSPIRE].
L. O’Beirne and N.J. Cornish, Constraining the polarization content of gravitational waves with astrometry, Phys. Rev.
D 98 (2018) 024020 [arXiv:1804.03146] [INSPIRE].
T. Damour and G. Esposito-Farese, Gravitational wave versus binary-pulsar tests of strong field gravity, Phys. Rev.
D 58 (1998) 042001 [gr-qc/9803031] [INSPIRE].
E. Barausse, C. Palenzuela, M. Ponce and L. Lehner, Neutron-star mergers in scalar-tensor theories of gravity, Phys. Rev.
D 87 (2013) 081506 [arXiv:1212.5053] [INSPIRE].
B. Finelli, G. Goon, E. Pajer and L. Santoni, Soft theorems for shift-symmetric cosmologies, Phys. Rev.
D 97 (2018) 063531 [arXiv:1711.03737] [INSPIRE].
B. Finelli, G. Goon, E. Pajer and L. Santoni, The effective theory of shift-symmetric cosmologies, JCAP
05 (2018) 060 [arXiv:1802.01580] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
E. Babichev, C. Charmousis and A. Lehébel, Asymptotically flat black holes in Horndeski theory and beyond, JCAP
04 (2017) 027 [arXiv:1702.01938] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
M. Minamitsuji and H. Motohashi, Stealth Schwarzschild solution in shift symmetry breaking theories, Phys. Rev.
D 98 (2018) 084027 [arXiv:1809.06611] [INSPIRE].
S. Chandrasekhar, The mathematical theory of black holes, Clarendon, Oxford, U.K. (1985) [INSPIRE].
C. Cheung, P. Creminelli, A.L. Fitzpatrick, J. Kaplan and L. Senatore, The effective field theory of inflation, JHEP
03 (2008) 014 [arXiv:0709.0293] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
B.F. Schutz and C.M. Will, Black hole normal modes: a semianalytic approach, Astrophys. J.
291 (1985) L33 [INSPIRE].
ADS
Article
Google Scholar
S. Iyer and C.M. Will, Black hole normal modes: a WKB approach. 1. Foundations and application of a higher order WKB analysis of potential barrier scattering, Phys. Rev.
D 35 (1987) 3621 [INSPIRE].
J. Martin and D.J. Schwarz, WKB approximation for inflationary cosmological perturbations, Phys. Rev.
D 67 (2003) 083512 [astro-ph/0210090] [INSPIRE].
R. Kase, L. Á. Gergely and S. Tsujikawa, Effective field theory of modified gravity on the spherically symmetric background: leading order dynamics and the odd-type perturbations, Phys. Rev.
D 90 (2014) 124019 [arXiv:1406.2402] [INSPIRE].
O.J. Tattersall, P.G. Ferreira and M. Lagos, General theories of linear gravitational perturbations to a Schwarzschild black hole, Phys. Rev.
D 97 (2018) 044021 [arXiv:1711.01992] [INSPIRE].
O.J. Tattersall and P.G. Ferreira, Quasinormal modes of black holes in Horndeski gravity, Phys. Rev.
D 97 (2018) 104047 [arXiv:1804.08950] [INSPIRE].
J. Ben Achour, D. Langlois and K. Noui, Degenerate higher order scalar-tensor theories beyond Horndeski and disformal transformations, Phys. Rev.
D 93 (2016) 124005 [arXiv:1602.08398] [INSPIRE].
L. Senatore and M. Zaldarriaga, The effective field theory of multifield inflation, JHEP
04 (2012) 024 [arXiv:1009.2093] [INSPIRE].
T. Regge and J.A. Wheeler, Stability of a Schwarzschild singularity, Phys. Rev.
108 (1957) 1063 [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
P. Creminelli, M.A. Luty, A. Nicolis and L. Senatore, Starting the universe: stable violation of the null energy condition and non-standard cosmologies, JHEP
12 (2006) 080 [hep-th/0606090] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
S. Alexander and N. Yunes, A new PPN parameter to test Chern-Simons gravity, Phys. Rev. Lett.
99 (2007) 241101 [hep-th/0703265] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
C. Molina, P. Pani, V. Cardoso and L. Gualtieri, Gravitational signature of Schwarzschild black holes in dynamical Chern-Simons gravity, Phys. Rev.
D 81 (2010) 124021 [arXiv:1004.4007] [INSPIRE].
D. Langlois, M. Mancarella, K. Noui and F. Vernizzi, Effective description of higher-order scalar-tensor theories, JCAP
05 (2017) 033 [arXiv:1703.03797] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
A. Nicolis, R. Rattazzi and E. Trincherini, The Galileon as a local modification of gravity, Phys. Rev.
D 79 (2009) 064036 [arXiv:0811.2197] [INSPIRE].
G.W. Horndeski, Second-order scalar-tensor field equations in a four-dimensional space, Int. J. Theor. Phys.
10 (1974) 363 [INSPIRE].
MathSciNet
Article
Google Scholar
C. Deffayet, X. Gao, D.A. Steer and G. Zahariade, From k-essence to generalised Galileons, Phys. Rev.
D 84 (2011) 064039 [arXiv:1103.3260] [INSPIRE].
J.L. Blázquez-Salcedo et al., Perturbed black holes in Einstein-dilaton-Gauss-Bonnet gravity: stability, ringdown and gravitational-wave emission, Phys. Rev.
D 94 (2016) 104024 [arXiv:1609.01286] [INSPIRE].
H. Witek, L. Gualtieri, P. Pani and T.P. Sotiriou, Black holes and binary mergers in scalar Gauss-Bonnet gravity: scalar field dynamics, arXiv:1810.05177 [INSPIRE].
V. Cardoso, E. Franzin and P. Pani, Is the gravitational-wave ringdown a probe of the event horizon?, Phys. Rev. Lett.
116 (2016) 171101 [Erratum ibid.
117 (2016) 089902] [arXiv:1602.07309] [INSPIRE].
V. Cardoso and P. Pani, The observational evidence for horizons: from echoes to precision gravitational-wave physics, arXiv:1707.03021 [INSPIRE].
S. Iyer, Black hole normal modes: a WKB approach. 2. Schwarzschild black holes, Phys. Rev.
D 35 (1987) 3632 [INSPIRE].
V. Baibhav and E. Berti, Multimode black hole spectroscopy, Phys. Rev.
D 99 (2019) 024005 [arXiv:1809.03500] [INSPIRE].
T. Kobayashi, H. Motohashi and T. Suyama, Black hole perturbation in the most general scalar-tensor theory with second-order field equations I: the odd-parity sector, Phys. Rev.
D 85 (2012) 084025 [Erratum ibid.
D 96 (2017) 109903] [arXiv:1202.4893] [INSPIRE].
S.H. Völkel, Inverse spectrum problem for quasi-stationary states, J. Phys. Commun.
2 (2018) 025029 [arXiv:1802.08684] [INSPIRE].
R.A. Konoplya, How to tell the shape of a wormhole by its quasinormal modes, Phys. Lett.
B 784 (2018) 43 [arXiv:1805.04718] [INSPIRE].
A. De Felice, T. Suyama and T. Tanaka, Stability of Schwarzschild-like solutions in f (R, G) gravity models, Phys. Rev.
D 83 (2011) 104035 [arXiv:1102.1521] [INSPIRE].
F.J. Zerilli, Effective potential for even parity Regge-Wheeler gravitational perturbation equations, Phys. Rev. Lett.
24 (1970) 737 [INSPIRE].
ADS
Article
Google Scholar
T. Kobayashi, H. Motohashi and T. Suyama, Black hole perturbation in the most general scalar-tensor theory with second-order field equations II: the even-parity sector, Phys. Rev.
D 89 (2014) 084042 [arXiv:1402.6740] [INSPIRE].
G. Obied, H. Ooguri, L. Spodyneiko and C. Vafa, De Sitter space and the swampland, arXiv:1806.08362 [INSPIRE].
E. Barausse, N. Yunes and K. Chamberlain, Theory-agnostic constraints on black-hole dipole radiation with multiband gravitational-wave astrophysics, Phys. Rev. Lett.
116 (2016) 241104 [arXiv:1603.04075] [INSPIRE].
ADS
Article
Google Scholar
D. Baumann, D. Green, H. Lee and R.A. Porto, Signs of analyticity in single-field inflation, Phys. Rev.
D 93 (2016) 023523 [arXiv:1502.07304] [INSPIRE].
G. Franciolini, L. Hui, R. Penco, L. Santoni and E. Trincherini, Stable wormholes in scalar-tensor theories, JHEP
01 (2019) 221 [arXiv:1811.05481] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
G. Franciolini, L. Hui, R. Penco, L. Santoni and E. Trincherini, in preparation.
A. Nicolis and R. Rattazzi, Classical and quantum consistency of the DGP model, JHEP
06 (2004) 059 [hep-th/0404159] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
D. Pirtskhalava, L. Santoni, E. Trincherini and F. Vernizzi, Weakly broken Galileon symmetry, JCAP
09 (2015) 007 [arXiv:1505.00007] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
L. Santoni, E. Trincherini and L.G. Trombetta, Behind Horndeski: structurally robust higher derivative EFTs, JHEP
08 (2018) 118 [arXiv:1806.10073] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
J. Gleyzes, D. Langlois, F. Piazza and F. Vernizzi, Essential building blocks of dark energy, JCAP
08 (2013) 025 [arXiv:1304.4840] [INSPIRE].
ADS
Article
Google Scholar
J. Gleyzes, D. Langlois, F. Piazza and F. Vernizzi, Exploring gravitational theories beyond Horndeski, JCAP
02 (2015) 018 [arXiv:1408.1952] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
F.J. Zerilli, Gravitational field of a particle falling in a Schwarzschild geometry analyzed in tensor harmonics, Phys. Rev.
D 2 (1970) 2141 [INSPIRE].
H.-P. Nollert, Quasinormal modes: the characteristic ‘sound’ of black holes and neutron stars, Class. Quant. Grav.
16 (1999) R159 [INSPIRE].
MathSciNet
Article
MATH
Google Scholar