Gravitating solitons and black holes with synchronised hair in the four dimensional O(3) sigma-model

Abstract

We consider the O(3) non-linear sigma-model, composed of three real scalar fields with a standard kinetic term and with a symmetry breaking potential in four space-time dimensions. We show that this simple, geometrically motivated model, admits both self-gravitating, asymptotically flat, non-topological solitons and hairy black holes, when minimally coupled to Einstein’s gravity, without the need to introduce higher order kinetic terms in the scalar fields action. Both spherically symmetric and spinning, axially symmetric solutions are studied. The solutions are obtained under a ansatz with oscillation (in the static case) or rotation (in the spinning case) in the internal space. Thus, there is symmetry non-inheritance: the matter sector is not invariant under the individual spacetime isometries. For the hairy black holes, which are necessarily spinning, the internal rotation (isorotation) must be synchronous with the rotational angular velocity of the event horizon. We explore the domain of existence of the solutions and some of their physical properties, that resemble closely those of (mini) boson stars and Kerr black holes with synchronised scalar hair in Einstein-(massive, complex)-Klein-Gordon theory.

A preprint version of the article is available at ArXiv.

References

  1. [1]

    M. Gell-Mann and M. Levy, The axial vector current in beta decay, Nuovo Cim. 16 (1960) 705 [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  2. [2]

    G.H. Derrick, Comments on nonlinear wave equations as models for elementary particles, J. Math. Phys. 5 (1964) 1252 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  3. [3]

    T.H.R. Skyrme, A Nonlinear field theory, Proc. Roy. Soc. Lond. A 260 (1961) 127 [INSPIRE].

  4. [4]

    L.D. Faddeev, Quantization of solitons, in Einstein and several contemporary tendencies in the theory of elementary particles in relativity, quanta, and cosmology. VOlume 1, M. Pantaleo and F. De Finis eds., Johnson Repr. Corp., New York, U.S.A., reprinted in L. Faddeev, 40 years in mathematical physics, World Scientific, Singapore [IAS-75-QS70].

  5. [5]

    L.D. Faddeev, Some comments on the many dimensional solitons, Lett. Math. Phys. 1 (1976) 289 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  6. [6]

    L.H. Kauffman, Knots and physics, River Ridge, New York, U.S.A. (2000).

  7. [7]

    P.M. Sutcliffe, Chiral ferromagnetic fluids: Let’s twist again, Nature Mater. 16 (2017) 392.

    ADS  Article  Google Scholar 

  8. [8]

    P.M. Sutcliffe, Hopfions, in Ludwig Faddeev memorial volume: a life in mathematical physics, M.L. Ge et al., World Scientific, Singapore (2018).

  9. [9]

    P.J. Ackerman and I.I. Smalyukh, Diversity of knot solitons in liquid crystals manifested by linking of preimages in torons and hopfions, Phys. Rev. X 7 (2017) 011006.

  10. [10]

    L.H. Kauffman, Knots and application, World Scientific, Singapore (1995).

  11. [11]

    D.W. Sumners, Lifting the curtain: using topology to probe the hidden action of enzymes, Notices A.M.S. 42 (1995) 528.

  12. [12]

    D. Harland, J. Jäykkä, Y. Shnir and M. Speight, Isospinning hopfions, J. Phys. A 46 (2013) 225402 [arXiv:1301.2923] [INSPIRE].

  13. [13]

    R.A. Battye and M. Haberichter, Classically isospinning Hopf solitons, Phys. Rev. D 87 (2013) 105003 [arXiv:1301.6803] [INSPIRE].

  14. [14]

    R. Friedberg, T.D. Lee and A. Sirlin, A class of scalar-field soliton solutions in three space dimensions, Phys. Rev. D 13 (1976) 2739 [INSPIRE].

  15. [15]

    S.R. Coleman, Q Balls, Nucl. Phys. B 262 (1985) 263 [Erratum ibid. B 269 (1986) 744] [INSPIRE].

  16. [16]

    I. Smolić, Symmetry inheritance of scalar fields, Class. Quant. Grav. 32 (2015) 145010 [arXiv:1501.04967] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  17. [17]

    D.J. Kaup, Klein-Gordon geon, Phys. Rev. 172 (1968) 1331 [INSPIRE].

    ADS  Article  Google Scholar 

  18. [18]

    R. Ruffini and S. Bonazzola, Systems of selfgravitating particles in general relativity and the concept of an equation of state, Phys. Rev. 187 (1969) 1767 [INSPIRE].

    ADS  Article  Google Scholar 

  19. [19]

    F.E. Schunck and E.W. Mielke, General relativistic boson stars, Class. Quant. Grav. 20 (2003) R301 [arXiv:0801.0307] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  20. [20]

    M. Colpi, S.L. Shapiro and I. Wasserman, Boson stars: gravitational equilibria of selfinteracting scalar fields, Phys. Rev. Lett. 57 (1986) 2485 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  21. [21]

    B. Kleihaus, J. Kunz and M. List, Rotating boson stars and Q-balls, Phys. Rev. D 72 (2005) 064002 [gr-qc/0505143] [INSPIRE].

  22. [22]

    B. Kleihaus, J. Kunz, M. List and I. Schaffer, Rotating boson stars and Q-balls. II. Negative parity and ergoregions, Phys. Rev. D 77 (2008) 064025 [arXiv:0712.3742] [INSPIRE].

  23. [23]

    S. Yoshida and Y. Eriguchi, Rotating boson stars in general relativity, Phys. Rev. D 56 (1997) 762 [INSPIRE].

  24. [24]

    F.E. Schunck and E.W. Mielke, Rotating boson star as an effective mass torus in general relativity, Phys. Lett. A 249 (1998) 389 [INSPIRE].

  25. [25]

    P. Grandclement, C. Somé and E. Gourgoulhon, Models of rotating boson stars and geodesics around them: new type of orbits, Phys. Rev. D 90 (2014) 024068 [arXiv:1405.4837] [INSPIRE].

  26. [26]

    C.A.R. Herdeiro, E. Radu and H.F. Rúnarsson, Spinning boson stars and Kerr black holes with scalar hair: the effect of self-interactions, Int. J. Mod. Phys. D 25 (2016) 1641014 [arXiv:1604.06202] [INSPIRE].

  27. [27]

    C.A.R. Herdeiro and E. Radu, Kerr black holes with scalar hair, Phys. Rev. Lett. 112 (2014) 221101 [arXiv:1403.2757] [INSPIRE].

  28. [28]

    C. Herdeiro and E. Radu, Construction and physical properties of Kerr black holes with scalar hair, Class. Quant. Grav. 32 (2015) 144001 [arXiv:1501.04319] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  29. [29]

    R.P. Kerr, Gravitational field of a spinning mass as an example of algebraically special metrics, Phys. Rev. Lett. 11 (1963) 237 [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  30. [30]

    S. Hod, Stationary scalar clouds around rotating black holes, Phys. Rev. D 86 (2012) 104026 [Erratum ibid. D 86 (2012) 129902] [arXiv:1211.3202] [INSPIRE].

  31. [31]

    S. Hod, Stationary resonances of rapidly-rotating Kerr black holes, Eur. Phys. J. C 73 (2013) 2378 [arXiv:1311.5298] [INSPIRE].

  32. [32]

    S. Hod, Kerr-Newman black holes with stationary charged scalar clouds, Phys. Rev. D 90 (2014) 024051 [arXiv:1406.1179] [INSPIRE].

  33. [33]

    C.L. Benone, L.C.B. Crispino, C. Herdeiro and E. Radu, Kerr-Newman scalar clouds, Phys. Rev. D 90 (2014) 104024 [arXiv:1409.1593] [INSPIRE].

  34. [34]

    S. Hod, Spinning Kerr black holes with stationary massive scalar clouds: The large-coupling regime, JHEP 01 (2017) 030 [arXiv:1612.00014] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  35. [35]

    R. Ruffini and J.A. Wheeler, Introducing the black hole, Phys. Today 24 (1971) 30.

    ADS  Article  Google Scholar 

  36. [36]

    W.E. East and F. Pretorius, Superradiant instability and backreaction of massive vector fields around Kerr black holes, Phys. Rev. Lett. 119 (2017) 041101 [arXiv:1704.04791] [INSPIRE].

  37. [37]

    C.A.R. Herdeiro and E. Radu, Dynamical formation of Kerr black holes with synchronized hair: an analytic model, Phys. Rev. Lett. 119 (2017) 261101 [arXiv:1706.06597] [INSPIRE].

    ADS  Article  Google Scholar 

  38. [38]

    J.C. Degollado, C.A.R. Herdeiro and E. Radu, Effective stability against superradiance of Kerr black holes with synchronised hair, Phys. Lett. B 781 (2018) 651 [arXiv:1802.07266] [INSPIRE].

  39. [39]

    P.V.P. Cunha, C.A.R. Herdeiro, E. Radu and H.F. Runarsson, Shadows of Kerr black holes with scalar hair, Phys. Rev. Lett. 115 (2015) 211102 [arXiv:1509.00021] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  40. [40]

    F.H. Vincent, E. Gourgoulhon, C. Herdeiro and E. Radu, Astrophysical imaging of Kerr black holes with scalar hair, Phys. Rev. D 94 (2016) 084045 [arXiv:1606.04246] [INSPIRE].

  41. [41]

    Y. Ni et al., Iron Kα line of Kerr black holes with scalar hair, JCAP 07 (2016) 049 [arXiv:1606.04654] [INSPIRE].

    ADS  Article  Google Scholar 

  42. [42]

    N. Franchini et al., Constraining black holes with light boson hair and boson stars using epicyclic frequencies and quasiperiodic oscillations, Phys. Rev. D 95 (2017) 124025 [arXiv:1612.00038] [INSPIRE].

  43. [43]

    C. Herdeiro and E. Radu, Ergosurfaces for Kerr black holes with scalar hair, Phys. Rev. D 89 (2014) 124018 [arXiv:1406.1225] [INSPIRE].

  44. [44]

    Y. Brihaye, C. Herdeiro and E. Radu, Inside black holes with synchronized hair, Phys. Lett. B 760 (2016) 279 [arXiv:1605.08901] [INSPIRE].

  45. [45]

    J.D. Bekenstein, Transcendence of the law of baryon-number conservation in black hole physics, Phys. Rev. Lett. 28 (1972) 452 [INSPIRE].

    ADS  Article  Google Scholar 

  46. [46]

    C.A.R. Herdeiro and E. Radu, Asymptotically flat black holes with scalar hair: a review, Int. J. Mod. Phys. D 24 (2015) 1542014 [arXiv:1504.08209] [INSPIRE].

  47. [47]

    R.S. Ward, Topological Q solitons, J. Math. Phys. 44 (2003) 3555 [hep-th/0302045] [INSPIRE].

  48. [48]

    E. Radu and M.S. Volkov, Existence of stationary, non-radiating ring solitons in field theory: knots and vortons, Phys. Rept. 468 (2008) 101 [arXiv:0804.1357] [INSPIRE].

    ADS  Article  Google Scholar 

  49. [49]

    Y.M. Shnir, Topological and non-topological solitons in scalar field theories, Cambridge University Press, Cambridge U.K. (2018).

  50. [50]

    M. Haberichter, Classically spinning and isospinning non-linear σ-model solitons, Ph.D. Thesis, University of Manchester, Manchester, U.K. (2014).

  51. [51]

    R.A. Leese, M. Peyrard and W.J. Zakrzewski, Soliton stability in the O(3) σ model in (2 + 1)-dimensions, Nonlinearity 3 (1990) 387.

  52. [52]

    R.A. Leese, Q lumps and their interactions, Nucl. Phys. B 366 (1991) 283 [INSPIRE].

  53. [53]

    R.A. Battye, S. Krusch and P.M. Sutcliffe, Spinning skyrmions and the skyrme parameters, Phys. Lett. B 626 (2005) 120 [hep-th/0507279] [INSPIRE].

  54. [54]

    R.A. Battye, M. Haberichter and S. Krusch, Classically isospinning Skyrmion solutions, Phys. Rev. D 90 (2014) 125035 [arXiv:1407.3264] [INSPIRE].

  55. [55]

    T. Ioannidou, B. Kleihaus and J. Kunz, Spinning gravitating skyrmions, Phys. Lett. B 643 (2006) 213 [gr-qc/0608110] [INSPIRE].

  56. [56]

    Y.M. Shnir, Gravitating hopfions, J. Exp. Theor. Phys. 121, (2015) 991.

  57. [57]

    I. Perapechka and Y. Shnir, Spinning gravitating Skyrmions in a generalized Einstein-Skyrme model, Phys. Rev. D 96 (2017) 125006 [arXiv:1710.06334] [INSPIRE].

  58. [58]

    C. Herdeiro, I. Perapechka, E. Radu and Ya. Shnir, Skyrmions around Kerr black holes and spinning BHs with Skyrme hair, JHEP 10 (2018) 119 [arXiv:1808.05388] [INSPIRE].

  59. [59]

    R. Friedberg, T.D. Lee and Y. Pang, Mini-soliton stars, Phys. Rev. D 35 (1987) 3640 [INSPIRE].

  60. [60]

    Y. Verbin, σ-model Q-balls and Q-stars, Phys. Rev. D 76 (2007) 085018 [arXiv:0708.3283] [INSPIRE].

  61. [61]

    C. Herdeiro, E. Radu and H. Runarsson, Non-linear Q-clouds around Kerr black holes, Phys. Lett. B 739 (2014) 302 [arXiv:1409.2877] [INSPIRE].

  62. [62]

    C.A.R. Herdeiro and E. Radu, A new spin on black hole hair, Int. J. Mod. Phys. D 23 (2014) 1442014 [arXiv:1405.3696] [INSPIRE].

  63. [63]

    C.J. Lin, R.C. Weng and S.S. Keerthi, Trust region newton method for logistic regression, J. Mach. Learn. Res. 9 (2008) 627.

  64. [64]

    N.I.M. Gould, J.A. Scott and Y. Hu, A numerical evaluation of sparse direct solvers for the solution of large sparse symmetric linear systems of equations, ACM Trans. Math. Soft. 33 (2007) 10.

    MathSciNet  Article  MATH  Google Scholar 

  65. [65]

    O. Schenk and K. Gärtner, Solving unsymmetric sparse systems of linear equations with PARDISO, Future Gen. Comput. Syst. 20 (3) (2004) 475.

    Article  MATH  Google Scholar 

  66. [66]

    W. Schönauer and R. Weiß, Efficient vectorizable PDE solvers, J. Comput. Appl. Math. 27 (1989) 279.

    Article  MATH  Google Scholar 

  67. [67]

    M. Schauder, R. Weiß and W. Schönauer, The CADSOL Program Package, Universität Karlsruhe, Interner Bericht Nr. 46/92 (1992).

  68. [68]

    P.V.P. Cunha et al., Lensing and dynamics of ultracompact bosonic stars, Phys. Rev. D 96 (2017) 104040 [arXiv:1709.06118] [INSPIRE].

  69. [69]

    I. Pena and D. Sudarsky, Do collapsed boson stars result in new types of black holes?, Class. Quant. Grav. 14 (1997) 3131 [INSPIRE].

  70. [70]

    Y.-Q. Wang, Y.-X. Liu and S.-W. Wei, Excited Kerr black holes with scalar hair, arXiv:1811.08795 [INSPIRE].

  71. [71]

    R. Brito, V. Cardoso, C.A.R. Herdeiro and E. Radu, Proca stars: gravitating Bose-Einstein condensates of massive spin 1 particles, Phys. Lett. B 752 (2016) 291 [arXiv:1508.05395] [INSPIRE].

  72. [72]

    J. Gladikowski and M. Hellmund, Static solitons with nonzero Hopf number, Phys. Rev. D 56 (1997) 5194 [hep-th/9609035] [INSPIRE].

  73. [73]

    N.S. Manton and P. Sutcliffe, Topological solitons, Cambridge University Press, Cambridge U.K. (2004).

  74. [74]

    C. Herdeiro, E. Radu and H. Runarsson, Kerr black holes with Proca hair, Class. Quant. Grav. 33 (2016) 154001 [arXiv:1603.02687] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  75. [75]

    O.J.C. Dias, G.T. Horowitz and J.E. Santos, Black holes with only one Killing field, JHEP 07 (2011) 115 [arXiv:1105.4167] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  76. [76]

    Y. Brihaye, C. Herdeiro and E. Radu, Myers-Perry black holes with scalar hair and a mass gap, Phys. Lett. B 739 (2014) 1 [arXiv:1408.5581] [INSPIRE].

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ya. Shnir.

Additional information

ArXiv ePrint: 1811.11799

Rights and permissions

This article is published under an open access license. Please check the 'Copyright Information' section for details of this license and what re-use is permitted. If your intended use exceeds what is permitted by the license or if you are unable to locate the licence and re-use information, please contact the Rights and Permissions team.

About this article

Verify currency and authenticity via CrossMark

Cite this article

Herdeiro, C., Perapechka, I., Radu, E. et al. Gravitating solitons and black holes with synchronised hair in the four dimensional O(3) sigma-model. J. High Energ. Phys. 2019, 111 (2019). https://doi.org/10.1007/JHEP02(2019)111

Download citation

Keywords

  • Black Holes
  • Sigma Models
  • Solitons Monopoles and Instantons
  • Classical Theories of Gravity