Spontaneous symmetry breaking from anyon condensation


In a physical system undergoing a continuous quantum phase transition, spontaneous symmetry breaking occurs when certain symmetries of the Hamiltonian fail to be preserved in the ground state. In the traditional Landau theory, a symmetry group can break down to any subgroup. However, this no longer holds across a continuous phase transition driven by anyon condensation in symmetry enriched topological orders (SETOs). For a SETO described by a G-crossed braided extension \( \mathcal{C}\subseteq {\mathcal{C}}_G^{\times } \), we show that physical considerations require that a connected étale algebra A\( \mathcal{C} \) admit a G-equivariant algebra structure for symmetry to be preserved under condensation of A. Given any categorical action GEqBr(\( \mathcal{C} \)) such that g(A) ≅ A for all gG, we show there is a short exact sequence whose splittings correspond to G-equivariant algebra structures. The non-splitting of this sequence forces spontaneous symmetry breaking under condensation of A, while inequivalent splittings of the sequence correspond to different SETOs resulting from the anyon-condensation transition. Furthermore, we show that if symmetry is preserved, there is a canonically associated SETO of \( {\mathcal{C}}_A^{\mathrm{loc}} \), and gauging this symmetry commutes with anyon condensation.

A preprint version of the article is available at ArXiv.


  1. [1]

    L.D. Landau, On the theory of phase transitions, Zh. Eksp. Teor. Fiz. 7 (1937) 19 [Phys. Z. Sowjetunion 11 (1937) 26] [Ukr. J. Phys. 53 (2008) 25] [INSPIRE].

  2. [2]

    L.D. Landau, Theory of phase transformations. II, Phys. Z. Sowjetunion 11 (1937) 545.

  3. [3]

    X.G. Wen, Vacuum degeneracy of chiral spin states in compactified space, Phys. Rev. B 40 (1989) 7387 [INSPIRE].

    ADS  Article  Google Scholar 

  4. [4]

    X.-G. Wen, Quantum field theory of many-body systems: from the origin of sound to an origin of light and electrons, Oxford University Press, New York, NY, U.S.A. (2004).

    Google Scholar 

  5. [5]

    D.C. Tsui, H.L. Stormer and A.C. Gossard, Two-dimensional magnetotransport in the extreme quantum limit, Phys. Rev. Lett. 48 (1982) 1559 [INSPIRE].

    ADS  Article  Google Scholar 

  6. [6]

    F. Wilczek, Fractional statistics and anyon superconductivity, World Scientific Pub Co Inc, Singapore (1990).

    Google Scholar 

  7. [7]

    X.-G. Wen, Quantum orders and symmetric spin liquids, Phys. Rev. B 65 (2002) 165113 [INSPIRE].

    ADS  Article  Google Scholar 

  8. [8]

    X. Chen, Z.-C. Gu, Z.-X. Liu and X.-G. Wen, Symmetry protected topological orders and the group cohomology of their symmetry group, Phys. Rev. B 87 (2013) 155114 [arXiv:1106.4772] [INSPIRE].

    ADS  Article  Google Scholar 

  9. [9]

    A.M. Essin and M. Hermele, Classifying fractionalization: symmetry classification of gapped Z 2 spin liquids in two dimensions, Phys. Rev. B 87 (2013) 104406 [arXiv:1212.0593] [INSPIRE].

    ADS  Article  Google Scholar 

  10. [10]

    A. Mesaros and Y. Ran, Classification of symmetry enriched topological phases with exactly solvable models, Phys. Rev. B 87 (2013) 155115 [arXiv:1212.0835] [INSPIRE].

    ADS  Article  Google Scholar 

  11. [11]

    L.-Y. Hung and X.-G. Wen, Quantized topological terms in weak-coupling gauge theories with a global symmetry and their connection to symmetry-enriched topological phases, Phys. Rev. B 87 (2013) 165107 [arXiv:1212.1827] [INSPIRE].

    ADS  Article  Google Scholar 

  12. [12]

    L.-Y. Hung and Y. Wan, Symmetry-enriched phases obtained via pseudo anyon condensation, Int. J. Mod. Phys. B 28 (2014) 1450172.

    ADS  MathSciNet  Article  MATH  Google Scholar 

  13. [13]

    M. Barkeshli, P. Bonderson, M. Cheng and Z. Wang, Symmetry, defects and gauging of topological phases, arXiv:1410.4540 [INSPIRE].

  14. [14]

    J.C.Y. Teo, T.L. Hughes and E. Fradkin, Theory of twist liquids: gauging an anyonic symmetry, Annals Phys. 360 (2015) 349 [arXiv:1503.06812] [INSPIRE].

    MathSciNet  Article  MATH  Google Scholar 

  15. [15]

    Y.-M. Lu and A. Vishwanath, Classification and properties of symmetry-enriched topological phases: Chern-Simons approach with applications to Z 2 spin liquids, Phys. Rev. B 93 (2016) 155121 [arXiv:1302.2634] [INSPIRE].

    ADS  Article  Google Scholar 

  16. [16]

    N. Tarantino, N.H. Lindner and L. Fidkowski, Symmetry fractionalization and twist defects, New J. Phys. 18 (2016) 035006 [arXiv:1506.06754].

    ADS  MathSciNet  Article  Google Scholar 

  17. [17]

    C.-K. Chiu, J.C. Teo, A.P. Schnyder and S. Ryu, Classification of topological quantum matter with symmetries, Rev. Mod. Phys. 88 (2016) 035005 [arXiv:1505.03535] [INSPIRE].

    ADS  Article  Google Scholar 

  18. [18]

    X. Chen, Symmetry fractionalization in two dimensional topological phases, Rev. Phys. 2 (2017) 3 [arXiv:1606.07569] [INSPIRE].

    Article  Google Scholar 

  19. [19]

    T. Lan, L. Kong and X.-G. Wen, Modular extensions of unitary braided fusion categories and 2 + 1D topological/SPT orders with symmetries, Commun. Math. Phys. 351 (2017) 709 [arXiv:1602.05936] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  20. [20]

    T. Lan, L. Kong and X.-G. Wen, Classification of (2 + 1)-dimensional topological order and symmetry-protected topological order for bosonic and fermionic systems with on-site symmetries, Phys. Rev. B 95 (2017) 235140 [arXiv:1602.05946] [INSPIRE].

    ADS  Article  Google Scholar 

  21. [21]

    F.A. Bais and J.K. Slingerland, Condensate induced transitions between topologically ordered phases, Phys. Rev. B 79 (2009) 045316 [arXiv:0808.0627] [INSPIRE].

    ADS  Article  Google Scholar 

  22. [22]

    L. Kong, Anyon condensation and tensor categories, Nucl. Phys. B 886 (2014) 436 [arXiv:1307.8244] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  23. [23]

    F.J. Burnell, Anyon condensation and its applications, Ann. Rev. Condensed Matter Phys. 9 (2018) 307 [arXiv:1706.04940] [INSPIRE].

    ADS  Article  Google Scholar 

  24. [24]

    P. Etingof, S. Gelaki, D. Nikshych and V. Ostrik, Tensor categories, in Math. Surv. Monogr. 205, American Mathematical Society, Providence, RI, U.S.A. (2015).

  25. [25]

    P. Etingof, D. Nikshych and V. Ostrik, Fusion categories and homotopy theory, Quant. Topol. 1 (2010) 209.

    MathSciNet  Article  MATH  Google Scholar 

  26. [26]

    Y. Qi, C.-M. Jian and C. Wang, Folding approach to topological orders enriched by mirror symmetry, arXiv:1710.09391 [INSPIRE].

  27. [27]

    R. Longo and K.-H. Rehren, Nets of subfactors, Rev. Math. Phys. 7 (1995) 567 [hep-th/9411077] [INSPIRE].

    MathSciNet  Article  MATH  Google Scholar 

  28. [28]

    M. Bischoff, Y. Kawahigashi and R. Longo, Characterization of 2D rational local conformal nets and its boundary conditions: the maximal case, Doc. Math. 20 (2015) 1137 [arXiv:1410.8848] [INSPIRE].

    MathSciNet  MATH  Google Scholar 

  29. [29]

    J.C. Baez and M. Shulman, Lectures on N -categories and cohomology, in Towards higher categories, IMA Vol. Math. Appl. 152, Springer, New York, NY, U.S.A. (2010), pg. 1.

  30. [30]

    S.X. Cui, C. Galindo, J.Y. Plavnik and Z. Wang, On gauging symmetry of modular categories, Commun. Math. Phys. 348 (2016) 1043 [arXiv:1510.03475] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  31. [31]

    A. Kirillov Jr. and V. Ostrik, On a q-analogue of the McKay correspondence and the ADE classification of \( \mathfrak{s}{\mathfrak{l}}_2 \) conformal field theories, Adv. Math. 171 (2002) 183.

    MathSciNet  Article  MATH  Google Scholar 

  32. [32]

    V. Drinfeld, S. Gelaki, D. Nikshych and V. Ostrik, On braided fusion categories. I, Selecta Math. (N.S.) 16 (2010) 1.

  33. [33]

    A. Davydov, M. Müger, D. Nikshych and V. Ostrik, The Witt group of non-degenerate braided fusion categories, J. Reine Angew. Math. 677 (2013) 135.

    MathSciNet  MATH  Google Scholar 

  34. [34]

    C. Galindo, Coherence for monoidal G-categories and braided G-crossed categories, J. Alg. 487 (2017) 118 [arXiv:1604.01679].

    MathSciNet  Article  MATH  Google Scholar 

  35. [35]

    S.X. Cui, M.S. Zini and Z. Wang, On generalized symmetries and structure of modular categories, arXiv:1809.00245.

  36. [36]

    G.M. Kelly, Doctrinal adjunction, in Category seminar (proc. sem., Sydney, Australia 1972/1973), Lect. Notes Math. 420, Springer, Berlin, Germany (1974).

  37. [37]

    K.S. Brown, Cohomology of groups, Grad. Texts Math. 87, Springer-Verlag, New York, NY, U.S.A. and Berlin, Germany (1982).

  38. [38]

    E. Meir and E. Musicantov, Module categories over graded fusion categories, J. Pure Appl. Alg. 216 (2012) 2449.

    MathSciNet  Article  MATH  Google Scholar 

  39. [39]

    A. Henriques, D. Penneys and J. Tener, Categorified trace for module tensor categories over braided tensor categories, Doc. Math. 21 (2016) 1089 [arXiv:1509.02937].

    MathSciNet  MATH  Google Scholar 

  40. [40]

    A. Henriques, D. Penneys and J.E. Tener, Planar algebras in braided tensor categories, arXiv:1607.06041.

  41. [41]

    P. Grossman, D. Jordan and N. Snyder, Cyclic extensions of fusion categories via the Brauer-Picard groupoid, Quant. Topol. 6 (2015) 313 [arXiv:1211.6414].

    MathSciNet  Article  MATH  Google Scholar 

  42. [42]

    N.D. Mermin, The topological theory of defects in ordered media, Rev. Mod. Phys. 51 (1979) 591 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  43. [43]

    A. Yu. Kitaev, Fault tolerant quantum computation by anyons, Annals Phys. 303 (2003) 2 [quant-ph/9707021] [INSPIRE].

  44. [44]

    S. Jiang and Y. Ran, Anyon condensation and a generic tensor-network construction for symmetry protected topological phases, Phys. Rev. B 95 (2017) 125107 [arXiv:1611.07652] [INSPIRE].

    ADS  Article  Google Scholar 

  45. [45]

    S. Gelaki, D. Naidu and D. Nikshych, Centers of graded fusion categories, Alg. Numb. Theor. 3 (2009) 959 [arXiv:0905.3117].

    MathSciNet  Article  MATH  Google Scholar 

  46. [46]

    T. Lan, A classification of (2 + 1)D topological phases with symmetries, Ph.D. thesis, University of Waterloo, Waterloo, ON, Canada (2018) [arXiv:1801.01210] [INSPIRE].

  47. [47]

    D. Naidu, Categorical Morita equivalence for group-theoretical categories, Commun. Alg. 35 (2007) 3544.

    MathSciNet  Article  MATH  Google Scholar 

  48. [48]

    F.M. Goodman, P. de la Harpe and V.F. Jones, Coxeter graphs and towers of algebras, Math. Sci. Res. Inst. Publ. 14, Springer-Verlag, New York, NY, U.S.A. (1989).

  49. [49]

    J. Böckenhauer, D.E. Evans and Y. Kawahigashi, Longo-Rehren subfactors arising from α-induction, Publ. Res. Inst. Math. Sci. 37 (2001) 1.

    MathSciNet  Article  MATH  Google Scholar 

  50. [50]

    M. Izumi, The structure of sectors associated with Longo-Rehren inclusions. II: examples, Rev. Math. Phys. 13 (2001) 603 [INSPIRE].

  51. [51]

    S.-M. Hong, E. Rowell and Z. Wang, On exotic modular tensor categories, Commun. Contemp. Math. 10 (2008) 1049 [arXiv:0710.5761] [INSPIRE].

    MathSciNet  Article  MATH  Google Scholar 

  52. [52]

    M. Bischoff, A remark on CFT realization of quantum doubles of subfactors: case index < 4, Lett. Math. Phys. 106 (2016) 341 [arXiv:1506.02606] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  53. [53]

    E. Ardonne, M. Cheng, E.C. Rowell and Z. Wang, Classification of metaplectic modular categories, J. Alg. 466 (2016) 141 [arXiv:1601.05460].

    MathSciNet  Article  MATH  Google Scholar 

  54. [54]

    M. Bischoff and A. Davydov, Hopf algebra actions in tensor categories, arXiv:1811.10528.

  55. [55]

    M. Bischoff, Conformal net realizability of Tambara-Yamagami categories and generalized metaplectic modular categories, arXiv:1803.04949.

  56. [56]

    R. Longo, Conformal subnets and intermediate subfactors, Commun. Math. Phys. 237 (2003) 7 [math.OA/0102196] [INSPIRE].

  57. [57]

    Y. Kawahigashi, R. Longo and M. Müger, Multiinterval subfactors and modularity of representations in conformal field theory, Commun. Math. Phys. 219 (2001) 631 [math.OA/9903104] [INSPIRE].

  58. [58]

    M. Bischoff, Generalized orbifold construction for conformal nets, Rev. Math. Phys. 29 (2016) 1750002 [arXiv:1608.00253] [INSPIRE].

    MathSciNet  Article  MATH  Google Scholar 

  59. [59]

    M. Bischoff, Y. Kawahigashi, R. Longo and K.-H. Rehren, Tensor categories and endomorphisms of von Neumann algebras — with applications to quantum field theory, SpringerBriefs Math. Phys. 3, Springer, Cham, Switzerland (2015).

  60. [60]

    M. Müger, Conformal orbifold theories and braided crossed G-categories, Commun. Math. Phys. 260 (2005) 727 [Erratum ibid. 260 (2005) 763] [INSPIRE].

  61. [61]

    F. Xu, Algebraic orbifold conformal field theories, Proc. Natl. Acad. Sci. U.S.A. 97 (2000) 14069.

    ADS  MathSciNet  Article  MATH  Google Scholar 

  62. [62]

    D. Buchholz, S. Doplicher, R. Longo and J.E. Roberts, Extensions of automorphisms and gauge symmetries, Commun. Math. Phys. 155 (1993) 123 [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information



Corresponding author

Correspondence to Yuan-Ming Lu.

Additional information

ArXiv ePrint: 1811.00434

Rights and permissions

This article is published under an open access license. Please check the 'Copyright Information' section for details of this license and what re-use is permitted. If your intended use exceeds what is permitted by the license or if you are unable to locate the licence and re-use information, please contact the Rights and Permissions team.

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bischoff, M., Jones, C., Lu, YM. et al. Spontaneous symmetry breaking from anyon condensation. J. High Energ. Phys. 2019, 62 (2019). https://doi.org/10.1007/JHEP02(2019)062

Download citation


  • Anyons
  • Spontaneous Symmetry Breaking
  • Topological Field Theories
  • Topological States of Matter