Abstract
In a physical system undergoing a continuous quantum phase transition, spontaneous symmetry breaking occurs when certain symmetries of the Hamiltonian fail to be preserved in the ground state. In the traditional Landau theory, a symmetry group can break down to any subgroup. However, this no longer holds across a continuous phase transition driven by anyon condensation in symmetry enriched topological orders (SETOs). For a SETO described by a G-crossed braided extension \( \mathcal{C}\subseteq {\mathcal{C}}_G^{\times } \), we show that physical considerations require that a connected étale algebra A ∈ \( \mathcal{C} \) admit a G-equivariant algebra structure for symmetry to be preserved under condensation of A. Given any categorical action G → EqBr(\( \mathcal{C} \)) such that g(A) ≅ A for all g ∈ G, we show there is a short exact sequence whose splittings correspond to G-equivariant algebra structures. The non-splitting of this sequence forces spontaneous symmetry breaking under condensation of A, while inequivalent splittings of the sequence correspond to different SETOs resulting from the anyon-condensation transition. Furthermore, we show that if symmetry is preserved, there is a canonically associated SETO of \( {\mathcal{C}}_A^{\mathrm{loc}} \), and gauging this symmetry commutes with anyon condensation.
Article PDF
References
L.D. Landau, On the theory of phase transitions, Zh. Eksp. Teor. Fiz. 7 (1937) 19 [Phys. Z. Sowjetunion 11 (1937) 26] [Ukr. J. Phys. 53 (2008) 25] [INSPIRE].
L.D. Landau, Theory of phase transformations. II, Phys. Z. Sowjetunion 11 (1937) 545.
X.G. Wen, Vacuum degeneracy of chiral spin states in compactified space, Phys. Rev. B 40 (1989) 7387 [INSPIRE].
X.-G. Wen, Quantum field theory of many-body systems: from the origin of sound to an origin of light and electrons, Oxford University Press, New York, NY, U.S.A. (2004).
D.C. Tsui, H.L. Stormer and A.C. Gossard, Two-dimensional magnetotransport in the extreme quantum limit, Phys. Rev. Lett. 48 (1982) 1559 [INSPIRE].
F. Wilczek, Fractional statistics and anyon superconductivity, World Scientific Pub Co Inc, Singapore (1990).
X.-G. Wen, Quantum orders and symmetric spin liquids, Phys. Rev. B 65 (2002) 165113 [INSPIRE].
X. Chen, Z.-C. Gu, Z.-X. Liu and X.-G. Wen, Symmetry protected topological orders and the group cohomology of their symmetry group, Phys. Rev. B 87 (2013) 155114 [arXiv:1106.4772] [INSPIRE].
A.M. Essin and M. Hermele, Classifying fractionalization: symmetry classification of gapped Z 2 spin liquids in two dimensions, Phys. Rev. B 87 (2013) 104406 [arXiv:1212.0593] [INSPIRE].
A. Mesaros and Y. Ran, Classification of symmetry enriched topological phases with exactly solvable models, Phys. Rev. B 87 (2013) 155115 [arXiv:1212.0835] [INSPIRE].
L.-Y. Hung and X.-G. Wen, Quantized topological terms in weak-coupling gauge theories with a global symmetry and their connection to symmetry-enriched topological phases, Phys. Rev. B 87 (2013) 165107 [arXiv:1212.1827] [INSPIRE].
L.-Y. Hung and Y. Wan, Symmetry-enriched phases obtained via pseudo anyon condensation, Int. J. Mod. Phys. B 28 (2014) 1450172.
M. Barkeshli, P. Bonderson, M. Cheng and Z. Wang, Symmetry, defects and gauging of topological phases, arXiv:1410.4540 [INSPIRE].
J.C.Y. Teo, T.L. Hughes and E. Fradkin, Theory of twist liquids: gauging an anyonic symmetry, Annals Phys. 360 (2015) 349 [arXiv:1503.06812] [INSPIRE].
Y.-M. Lu and A. Vishwanath, Classification and properties of symmetry-enriched topological phases: Chern-Simons approach with applications to Z 2 spin liquids, Phys. Rev. B 93 (2016) 155121 [arXiv:1302.2634] [INSPIRE].
N. Tarantino, N.H. Lindner and L. Fidkowski, Symmetry fractionalization and twist defects, New J. Phys. 18 (2016) 035006 [arXiv:1506.06754].
C.-K. Chiu, J.C. Teo, A.P. Schnyder and S. Ryu, Classification of topological quantum matter with symmetries, Rev. Mod. Phys. 88 (2016) 035005 [arXiv:1505.03535] [INSPIRE].
X. Chen, Symmetry fractionalization in two dimensional topological phases, Rev. Phys. 2 (2017) 3 [arXiv:1606.07569] [INSPIRE].
T. Lan, L. Kong and X.-G. Wen, Modular extensions of unitary braided fusion categories and 2 + 1D topological/SPT orders with symmetries, Commun. Math. Phys. 351 (2017) 709 [arXiv:1602.05936] [INSPIRE].
T. Lan, L. Kong and X.-G. Wen, Classification of (2 + 1)-dimensional topological order and symmetry-protected topological order for bosonic and fermionic systems with on-site symmetries, Phys. Rev. B 95 (2017) 235140 [arXiv:1602.05946] [INSPIRE].
F.A. Bais and J.K. Slingerland, Condensate induced transitions between topologically ordered phases, Phys. Rev. B 79 (2009) 045316 [arXiv:0808.0627] [INSPIRE].
L. Kong, Anyon condensation and tensor categories, Nucl. Phys. B 886 (2014) 436 [arXiv:1307.8244] [INSPIRE].
F.J. Burnell, Anyon condensation and its applications, Ann. Rev. Condensed Matter Phys. 9 (2018) 307 [arXiv:1706.04940] [INSPIRE].
P. Etingof, S. Gelaki, D. Nikshych and V. Ostrik, Tensor categories, in Math. Surv. Monogr. 205, American Mathematical Society, Providence, RI, U.S.A. (2015).
P. Etingof, D. Nikshych and V. Ostrik, Fusion categories and homotopy theory, Quant. Topol. 1 (2010) 209.
Y. Qi, C.-M. Jian and C. Wang, Folding approach to topological orders enriched by mirror symmetry, arXiv:1710.09391 [INSPIRE].
R. Longo and K.-H. Rehren, Nets of subfactors, Rev. Math. Phys. 7 (1995) 567 [hep-th/9411077] [INSPIRE].
M. Bischoff, Y. Kawahigashi and R. Longo, Characterization of 2D rational local conformal nets and its boundary conditions: the maximal case, Doc. Math. 20 (2015) 1137 [arXiv:1410.8848] [INSPIRE].
J.C. Baez and M. Shulman, Lectures on N -categories and cohomology, in Towards higher categories, IMA Vol. Math. Appl. 152, Springer, New York, NY, U.S.A. (2010), pg. 1.
S.X. Cui, C. Galindo, J.Y. Plavnik and Z. Wang, On gauging symmetry of modular categories, Commun. Math. Phys. 348 (2016) 1043 [arXiv:1510.03475] [INSPIRE].
A. Kirillov Jr. and V. Ostrik, On a q-analogue of the McKay correspondence and the ADE classification of \( \mathfrak{s}{\mathfrak{l}}_2 \) conformal field theories, Adv. Math. 171 (2002) 183.
V. Drinfeld, S. Gelaki, D. Nikshych and V. Ostrik, On braided fusion categories. I, Selecta Math. (N.S.) 16 (2010) 1.
A. Davydov, M. Müger, D. Nikshych and V. Ostrik, The Witt group of non-degenerate braided fusion categories, J. Reine Angew. Math. 677 (2013) 135.
C. Galindo, Coherence for monoidal G-categories and braided G-crossed categories, J. Alg. 487 (2017) 118 [arXiv:1604.01679].
S.X. Cui, M.S. Zini and Z. Wang, On generalized symmetries and structure of modular categories, arXiv:1809.00245.
G.M. Kelly, Doctrinal adjunction, in Category seminar (proc. sem., Sydney, Australia 1972/1973), Lect. Notes Math. 420, Springer, Berlin, Germany (1974).
K.S. Brown, Cohomology of groups, Grad. Texts Math. 87, Springer-Verlag, New York, NY, U.S.A. and Berlin, Germany (1982).
E. Meir and E. Musicantov, Module categories over graded fusion categories, J. Pure Appl. Alg. 216 (2012) 2449.
A. Henriques, D. Penneys and J. Tener, Categorified trace for module tensor categories over braided tensor categories, Doc. Math. 21 (2016) 1089 [arXiv:1509.02937].
A. Henriques, D. Penneys and J.E. Tener, Planar algebras in braided tensor categories, arXiv:1607.06041.
P. Grossman, D. Jordan and N. Snyder, Cyclic extensions of fusion categories via the Brauer-Picard groupoid, Quant. Topol. 6 (2015) 313 [arXiv:1211.6414].
N.D. Mermin, The topological theory of defects in ordered media, Rev. Mod. Phys. 51 (1979) 591 [INSPIRE].
A. Yu. Kitaev, Fault tolerant quantum computation by anyons, Annals Phys. 303 (2003) 2 [quant-ph/9707021] [INSPIRE].
S. Jiang and Y. Ran, Anyon condensation and a generic tensor-network construction for symmetry protected topological phases, Phys. Rev. B 95 (2017) 125107 [arXiv:1611.07652] [INSPIRE].
S. Gelaki, D. Naidu and D. Nikshych, Centers of graded fusion categories, Alg. Numb. Theor. 3 (2009) 959 [arXiv:0905.3117].
T. Lan, A classification of (2 + 1)D topological phases with symmetries, Ph.D. thesis, University of Waterloo, Waterloo, ON, Canada (2018) [arXiv:1801.01210] [INSPIRE].
D. Naidu, Categorical Morita equivalence for group-theoretical categories, Commun. Alg. 35 (2007) 3544.
F.M. Goodman, P. de la Harpe and V.F. Jones, Coxeter graphs and towers of algebras, Math. Sci. Res. Inst. Publ. 14, Springer-Verlag, New York, NY, U.S.A. (1989).
J. Böckenhauer, D.E. Evans and Y. Kawahigashi, Longo-Rehren subfactors arising from α-induction, Publ. Res. Inst. Math. Sci. 37 (2001) 1.
M. Izumi, The structure of sectors associated with Longo-Rehren inclusions. II: examples, Rev. Math. Phys. 13 (2001) 603 [INSPIRE].
S.-M. Hong, E. Rowell and Z. Wang, On exotic modular tensor categories, Commun. Contemp. Math. 10 (2008) 1049 [arXiv:0710.5761] [INSPIRE].
M. Bischoff, A remark on CFT realization of quantum doubles of subfactors: case index < 4, Lett. Math. Phys. 106 (2016) 341 [arXiv:1506.02606] [INSPIRE].
E. Ardonne, M. Cheng, E.C. Rowell and Z. Wang, Classification of metaplectic modular categories, J. Alg. 466 (2016) 141 [arXiv:1601.05460].
M. Bischoff and A. Davydov, Hopf algebra actions in tensor categories, arXiv:1811.10528.
M. Bischoff, Conformal net realizability of Tambara-Yamagami categories and generalized metaplectic modular categories, arXiv:1803.04949.
R. Longo, Conformal subnets and intermediate subfactors, Commun. Math. Phys. 237 (2003) 7 [math.OA/0102196] [INSPIRE].
Y. Kawahigashi, R. Longo and M. Müger, Multiinterval subfactors and modularity of representations in conformal field theory, Commun. Math. Phys. 219 (2001) 631 [math.OA/9903104] [INSPIRE].
M. Bischoff, Generalized orbifold construction for conformal nets, Rev. Math. Phys. 29 (2016) 1750002 [arXiv:1608.00253] [INSPIRE].
M. Bischoff, Y. Kawahigashi, R. Longo and K.-H. Rehren, Tensor categories and endomorphisms of von Neumann algebras — with applications to quantum field theory, SpringerBriefs Math. Phys. 3, Springer, Cham, Switzerland (2015).
M. Müger, Conformal orbifold theories and braided crossed G-categories, Commun. Math. Phys. 260 (2005) 727 [Erratum ibid. 260 (2005) 763] [INSPIRE].
F. Xu, Algebraic orbifold conformal field theories, Proc. Natl. Acad. Sci. U.S.A. 97 (2000) 14069.
D. Buchholz, S. Doplicher, R. Longo and J.E. Roberts, Extensions of automorphisms and gauge symmetries, Commun. Math. Phys. 155 (1993) 123 [INSPIRE].
Open Access
This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.
Author information
Authors and Affiliations
Corresponding author
Additional information
ArXiv ePrint: 1811.00434
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.
The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit https://creativecommons.org/licenses/by/4.0/.
About this article
Cite this article
Bischoff, M., Jones, C., Lu, YM. et al. Spontaneous symmetry breaking from anyon condensation. J. High Energ. Phys. 2019, 62 (2019). https://doi.org/10.1007/JHEP02(2019)062
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/JHEP02(2019)062