Skip to main content

Effective field theories in Rξ gauges

A preprint version of the article is available at arXiv.


In effective quantum field theories, higher dimensional operators can affect the canonical normalization of kinetic terms at tree level. These contributions for scalars and gauge bosons should be carefully included in the gauge fixing procedure, in order to end up with a convenient set of Feynman rules. We develop such a setup for the linear Rξ-gauges. It involves a suitable reduction of the operator basis, a generalized gauge fixing term, and a corresponding ghost sector. Our approach extends previous results for the dimension-six Standard Model Effective Field Theory to a generic class of effective theories with operators of arbitrary dimension.


  1. Particle Data Group collaboration, Review of Particle Physics, Phys. Rev. D 98 (2018) 030001 [INSPIRE].

  2. W. Buchmüller and D. Wyler, Effective Lagrangian Analysis of New Interactions and Flavor Conservation, Nucl. Phys. B 268 (1986) 621 [INSPIRE].

    ADS  Article  Google Scholar 

  3. B. Grzadkowski, M. Iskrzyński, M. Misiak and J. Rosiek, Dimension-Six Terms in the Standard Model Lagrangian, JHEP 10 (2010) 085 [arXiv:1008.4884] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  4. B. Henning, X. Lu, T. Melia and H. Murayama, 2, 84, 30, 993, 560, 15456, 11962, 261485, …: Higher dimension operators in the SM EFT, JHEP 08 (2017) 016 [arXiv:1512.03433] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  5. R.H. Parker, C. Yu, W. Zhong, B. Estey and H. Müller, Measurement of the fine-structure constant as a test of the Standard Model, Science 365 (2018) 191.

    ADS  MathSciNet  Article  MATH  Google Scholar 

  6. J. Aebischer, J. Kumar, P. Stangl and D.M. Straub, A Global Likelihood for Precision Constraints and Flavour Anomalies, arXiv:1810.07698 [INSPIRE].

  7. A. Dedes, W. Materkowska, M. Paraskevas, J. Rosiek and K. Suxho, Feynman rules for the Standard Model Effective Field Theory in R ξ -gauges, JHEP 06 (2017) 143 [arXiv:1704.03888] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  8. A. Helset, M. Paraskevas and M. Trott, Gauge fixing the Standard Model Effective Field Theory, Phys. Rev. Lett. 120 (2018) 251801 [arXiv:1803.08001] [INSPIRE].

    ADS  Article  Google Scholar 

  9. T. Appelquist and J. Carazzone, Infrared Singularities and Massive Fields, Phys. Rev. D 11 (1975) 2856 [INSPIRE].

    ADS  Google Scholar 

  10. H.D. Politzer, Power Corrections at Short Distances, Nucl. Phys. B 172 (1980) 349 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  11. H. Kluberg-Stern and J.B. Zuber, Renormalization of Nonabelian Gauge Theories in a Background Field Gauge. 2. Gauge Invariant Operators, Phys. Rev. D 12 (1975) 3159 [INSPIRE].

    ADS  Google Scholar 

  12. C. Grosse-Knetter, Effective Lagrangians with higher derivatives and equations of motion, Phys. Rev. D 49 (1994) 6709 [hep-ph/9306321] [INSPIRE].

  13. C. Arzt, Reduced effective Lagrangians, Phys. Lett. B 342 (1995) 189 [hep-ph/9304230] [INSPIRE].

  14. H. Simma, Equations of motion for effective Lagrangians and penguins in rare B decays, Z. Phys. C 61 (1994) 67 [hep-ph/9307274] [INSPIRE].

  15. J. Wudka, Electroweak effective Lagrangians, Int. J. Mod. Phys. A 9 (1994) 2301 [hep-ph/9406205] [INSPIRE].

  16. A.V. Manohar, Introduction to Effective Field Theories, in Les Houches summer school: EFT in Particle Physics and Cosmology Les Houches, Chamonix Valley, France, July 3–28, 2017, 2018, arXiv:1804.05863 [INSPIRE].

  17. J.C. Criado and M. Pérez-Victoria, Field redefinitions in effective theories at higher orders, arXiv:1811.09413 [INSPIRE].

  18. M.E. Peskin and D.V. Schroeder, An Introduction to quantum field theory, Perseus Books Publishing, L.L.C. (1995).

    Google Scholar 

  19. C. Becchi, A. Rouet and R. Stora, Renormalization of Gauge Theories, Annals Phys. 98 (1976) 287 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  20. M.Z. Iofa and I.V. Tyutin, Gauge Invariance of Spontaneously Broken Nonabelian Theories in the Bogolyubov-Parasiuk-HEPP-Zimmerman Method, Teor. Mat. Fiz. 27 (1976) 38 [Theor. Math. Phys. 27 (1976) 316] [INSPIRE].

  21. M. Iskrzynski, Classification of higher-dimensional operators in the Standard Model (in Polish), MSc Thesis, University of Warsaw, Poland, (2010).

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Authors and Affiliations


Corresponding author

Correspondence to M. Misiak.

Additional information

ArXiv ePrint: 1812.11513

Rights and permissions

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Misiak, M., Paraskevas, M., Rosiek, J. et al. Effective field theories in Rξ gauges. J. High Energ. Phys. 2019, 51 (2019).

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI:


  • Effective Field Theories
  • Gauge Symmetry
  • Spontaneous Symmetry Breaking