Particle Data Group collaboration, Review of Particle Physics, Phys. Rev.
D 98 (2018) 030001 [INSPIRE].
W. Buchmüller and D. Wyler, Effective Lagrangian Analysis of New Interactions and Flavor Conservation, Nucl. Phys.
B 268 (1986) 621 [INSPIRE].
ADS
Article
Google Scholar
B. Grzadkowski, M. Iskrzyński, M. Misiak and J. Rosiek, Dimension-Six Terms in the Standard Model Lagrangian, JHEP
10 (2010) 085 [arXiv:1008.4884] [INSPIRE].
ADS
Article
MATH
Google Scholar
B. Henning, X. Lu, T. Melia and H. Murayama, 2, 84, 30, 993, 560, 15456, 11962, 261485, …: Higher dimension operators in the SM EFT, JHEP
08 (2017) 016 [arXiv:1512.03433] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
R.H. Parker, C. Yu, W. Zhong, B. Estey and H. Müller, Measurement of the fine-structure constant as a test of the Standard Model, Science
365 (2018) 191.
ADS
MathSciNet
Article
MATH
Google Scholar
J. Aebischer, J. Kumar, P. Stangl and D.M. Straub, A Global Likelihood for Precision Constraints and Flavour Anomalies, arXiv:1810.07698 [INSPIRE].
A. Dedes, W. Materkowska, M. Paraskevas, J. Rosiek and K. Suxho, Feynman rules for the Standard Model Effective Field Theory in R
ξ
-gauges, JHEP
06 (2017) 143 [arXiv:1704.03888] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
A. Helset, M. Paraskevas and M. Trott, Gauge fixing the Standard Model Effective Field Theory, Phys. Rev. Lett.
120 (2018) 251801 [arXiv:1803.08001] [INSPIRE].
ADS
Article
Google Scholar
T. Appelquist and J. Carazzone, Infrared Singularities and Massive Fields, Phys. Rev.
D 11 (1975) 2856 [INSPIRE].
ADS
Google Scholar
H.D. Politzer, Power Corrections at Short Distances, Nucl. Phys.
B 172 (1980) 349 [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
H. Kluberg-Stern and J.B. Zuber, Renormalization of Nonabelian Gauge Theories in a Background Field Gauge. 2. Gauge Invariant Operators, Phys. Rev.
D 12 (1975) 3159 [INSPIRE].
ADS
Google Scholar
C. Grosse-Knetter, Effective Lagrangians with higher derivatives and equations of motion, Phys. Rev.
D 49 (1994) 6709 [hep-ph/9306321] [INSPIRE].
C. Arzt, Reduced effective Lagrangians, Phys. Lett.
B 342 (1995) 189 [hep-ph/9304230] [INSPIRE].
H. Simma, Equations of motion for effective Lagrangians and penguins in rare B decays, Z. Phys.
C 61 (1994) 67 [hep-ph/9307274] [INSPIRE].
J. Wudka, Electroweak effective Lagrangians, Int. J. Mod. Phys.
A 9 (1994) 2301 [hep-ph/9406205] [INSPIRE].
A.V. Manohar, Introduction to Effective Field Theories, in Les Houches summer school: EFT in Particle Physics and Cosmology Les Houches, Chamonix Valley, France, July 3–28, 2017, 2018, arXiv:1804.05863 [INSPIRE].
J.C. Criado and M. Pérez-Victoria, Field redefinitions in effective theories at higher orders, arXiv:1811.09413 [INSPIRE].
M.E. Peskin and D.V. Schroeder, An Introduction to quantum field theory, Perseus Books Publishing, L.L.C. (1995).
Google Scholar
C. Becchi, A. Rouet and R. Stora, Renormalization of Gauge Theories, Annals Phys.
98 (1976) 287 [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
M.Z. Iofa and I.V. Tyutin, Gauge Invariance of Spontaneously Broken Nonabelian Theories in the Bogolyubov-Parasiuk-HEPP-Zimmerman Method, Teor. Mat. Fiz.
27 (1976) 38 [Theor. Math. Phys.
27 (1976) 316] [INSPIRE].
M. Iskrzynski, Classification of higher-dimensional operators in the Standard Model (in Polish), MSc Thesis, University of Warsaw, Poland, (2010).