Journal of High Energy Physics

, 2019:40 | Cite as

Towards the higher point holographic momentum space amplitudes

  • Soner Albayrak
  • Savan KharelEmail author
Open Access
Regular Article - Theoretical Physics


In this paper, we calculate higher point tree level vector amplitudes propagating in AdS4, or equivalently the dual boundary current correlators. We use bulk perturbation theory to compute tree level Witten diagrams. We show that when these amplitudes are written in momentum space, they reduce to relatively simple expressions. We explicitly compute four and five point correlators and also sketch a general strategy to compute the full six-point correlators.


AdS-CFT Correspondence Conformal Field Theory Scattering Amplitudes Gauge-gravity correspondence 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    J.M. Maldacena, The large N limit of superconformal field theories and supergravity, Int. J. Theor. Phys. 38 (1999) 1113 [hep-th/9711200] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  2. [2]
    E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  3. [3]
    J. Penedones, TASI lectures on AdS/CFT, in the proceedingsof the Theoretical Advanced Study Institute in Elementary Particle Physics: New Frontiers in Fields and Strings (TASI 2015), June 1–26, Boulder, U.S.A. (2015), arXiv:1608.04948 [INSPIRE].
  4. [4]
    D. Poland, S. Rychkov and A. Vichi, The conformal bootstrap: theory, numerical techniques and applications, Rev. Mod. Phys. 91 (2019) 15002 [arXiv:1805.04405] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  5. [5]
    D.Z. Freedman, S.D. Mathur, A. Matusis and L. Rastelli, Comments on 4 point functions in the CFT/AdS correspondence, Phys. Lett. B 452 (1999) 61 [hep-th/9808006].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  6. [6]
    H. Liu and A.A. Tseytlin, On four point functions in the CFT/AdS correspondence, Phys. Rev. D 59 (1999) 086002 [hep-th/9807097].ADSMathSciNetGoogle Scholar
  7. [7]
    D.Z. Freedman, S.D. Mathur, A. Matusis and L. Rastelli, Correlation functions in the CFT(d)/AdS(d+1) correspondence, Nucl. Phys. B 546 (1999) 96 [hep-th/9804058] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  8. [8]
    E. D’Hoker, D.Z. Freedman and L. Rastelli, AdS/CFT four point functions: how to succeed at z integrals without really trying, Nucl. Phys. B 562 (1999) 395 [hep-th/9905049] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  9. [9]
    E. D’Hoker et al., Graviton exchange and complete four point functions in the AdS/CFT correspondence, Nucl. Phys. B 562 (1999) 353 [hep-th/9903196] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  10. [10]
    J. Penedones, Writing CFT correlation functions as AdS scattering amplitudes, JHEP 03 (2011) 025 [arXiv:1011.1485] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  11. [11]
    M.F. Paulos, Towards Feynman rules for Mellin amplitudes, JHEP 10 (2011) 074 [arXiv:1107.1504] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  12. [12]
    G. Mack, D-dimensional conformal field theories with anomalous dimensions as dual resonance models, Bulg. J. Phys. 36 (2009) 214 [arXiv:0909.1024] [INSPIRE].MathSciNetzbMATHGoogle Scholar
  13. [13]
    A.L. Fitzpatrick et al., A Natural Language for AdS/CFT Correlators, JHEP 11 (2011) 095 [arXiv:1107.1499] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  14. [14]
    S. Kharel and G. Siopsis, Tree-level correlators of scalar and vector fields in AdS/CFT, JHEP 11 (2013) 159 [arXiv:1308.2515] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  15. [15]
    A.L. Fitzpatrick and J. Kaplan, Analyticity and the holographic S-matrix, JHEP 10 (2012) 127 [arXiv:1111.6972] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  16. [16]
    A.L. Fitzpatrick and J. Kaplan, Unitarity and the holographic S-matrix, JHEP 10 (2012) 032 [arXiv:1112.4845] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  17. [17]
    M.S. Costa, V. Gonçalves and J. Penedones, Spinning AdS propagators, JHEP 09 (2014) 064 [arXiv:1404.5625] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  18. [18]
    S. Raju, BCFW for Witten diagrams, Phys. Rev. Lett. 106 (2011) 091601 [arXiv:1011.0780] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  19. [19]
    S. Raju, Four point functions of the stress tensor and conserved currents in AdS 4 /CFT 3, Phys. Rev. D 85 (2012) 126008 [arXiv:1201.6452] [INSPIRE].ADSGoogle Scholar
  20. [20]
    S. Raju, New recursion relations and a flat space limit for AdS/CFT correlators, Phys. Rev. D 85 (2012) 126009 [arXiv:1201.6449] [INSPIRE].ADSGoogle Scholar
  21. [21]
    S. Raju, Recursion relations for AdS/CFT correlators, Phys. Rev. D 83 (2011) 126002 [arXiv:1102.4724].ADSGoogle Scholar
  22. [22]
    N. Arkani-Hamed and J. Maldacena, Cosmological collider physics, arXiv:1503.08043 [INSPIRE].
  23. [23]
    A. Bzowski, P. McFadden and K. Skenderis, Implications of conformal invariance in momentum space, JHEP 03 (2104) 111 [arXiv:1304.7760].
  24. [24]
    A. Bzowski, P. McFadden and K. Skenderis, Scalar 3-point functions in CFT: renormalisation, β-functions and anomalies, JHEP 03 (2016) 066 [arXiv:1510.08442] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    A. Bzowski, P. McFadden and K. Skenderis, Evaluation of conformal integrals, JHEP 02 (2016) 068 [arXiv:1511.02357] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  26. [26]
    J.M. Maldacena, Non-Gaussian features of primordial fluctuations in single field inflationary models, JHEP 05 (2003) 013 [astro-ph/0210603] [INSPIRE].
  27. [27]
    J.M. Maldacena and G.L. Pimentel, On graviton non-Gaussianities during inflation, JHEP 09 (2011) 045 [arXiv:1104.2846] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  28. [28]
    R. Britto, F. Cachazo, B. Feng and E. Witten, Direct proof of tree-level recursion relation in Yang-Mills theory, Phys. Rev. Lett. 94 (2005) 181602 [hep-th/0501052] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  29. [29]
    E. Witten, Perturbative gauge theory as a string theory in twistor space, Commun. Math. Phys. 252 (2004) 189 [hep-th/0312171] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  30. [30]
    N. Arkani-Hamed, F. Cachazo and J. Kaplan, What is the simplest quantum field theory?, JHEP 09 (2010) 016 [arXiv:0808.1446] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  31. [31]
    N. Arkani-Hamed, F. Cachazo, C. Cheung and J. Kaplan, A Duality For The S Matrix, JHEP 03 (2010) 020 [arXiv:0907.5418] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  32. [32]
    N. Arkani-Hamed, F. Cachazo and C. Cheung, The Grassmannian origin of dual superconformal invariance, JHEP 03 (2010) 036 [arXiv:0909.0483].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  33. [33]
    H. Elvang and Y.T. Huang, Scattering amplitudes, arXiv:1308.1697.
  34. [34]
    C. Fronsdal, Elementary particles in a curved space. II, Phys. Rev. D 10 (1974) 589 [INSPIRE].
  35. [35]
    L.J. Dixon, Calculating scattering amplitudes efficiently, talk given at the QCD and beyond. Theoretical Advanced Study Institute in Elementary Particle Physics (TASI-95), June 4–30, Boulder, U.S.A. (1995), hep-ph/9601359 [INSPIRE].
  36. [36]
    D. Anninos, T. Anous, D.Z. Freedman and G. Konstantinidis, Late-time Structure of the Bunch-Davies de Sitter Wavefunction, JCAP 11 (2015) 048 [arXiv:1406.5490] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  37. [37]
    N. Arkani-Hamed, P. Benincasa and A. Postnikov, Cosmological polytopes and the wavefunction of the universe, arXiv:1709.02813 [INSPIRE].
  38. [38]
    C. Chowdhury and S. Kharel, All recursion relation for dual CFT correlators, in preparation.Google Scholar
  39. [39]
    K. Risager, A direct proof of the CSW rules, JHEP 12 (2005) 003 [hep-th/0508206].ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Department of PhysicsYale UniversityNew HavenU.S.A.
  2. 2.Walter Burke Institute for Theoretical PhysicsCaltechPasadenaU.S.A.
  3. 3.Department of PhysicsWilliams CollegeWilliamstownU.S.A.

Personalised recommendations