ν-inflaton dark matter

Abstract

We present a unified model where the same scalar field can drive inflation and account for the present dark matter abundance. This scenario is based on the incomplete decay of the inflaton field into right-handed neutrino pairs, which is accomplished by imposing a discrete interchange symmetry on the inflaton and on two of the right-handed neutrinos. We show that this can lead to a successful reheating of the Universe after inflation, while leaving a stable inflaton remnant at late times. This remnant may be in the form of WIMP-like inflaton particles or of an oscillating inflaton condensate, depending on whether or not the latter evaporates and reaches thermal equilibrium with the cosmic plasma. We further show that this scenario is compatible with generating light neutrino masses and mixings through the seesaw mechanism, predicting at least one massless neutrino, and also the observed baryon asymmetry via thermal leptogenesis.

A preprint version of the article is available at ArXiv.

References

  1. [1]

    A.H. Guth, The Inflationary Universe: A Possible Solution to the Horizon and Flatness Problems, Phys. Rev. D 23 (1981) 347 [INSPIRE].

    ADS  MATH  Google Scholar 

  2. [2]

    A.D. Linde, A New Inflationary Universe Scenario: A Possible Solution of the Horizon, Flatness, Homogeneity, Isotropy and Primordial Monopole Problems, Phys. Lett. 108B (1982) 389 [INSPIRE].

    ADS  Article  Google Scholar 

  3. [3]

    A. Albrecht and P.J. Steinhardt, Cosmology for Grand Unified Theories with Radiatively Induced Symmetry Breaking, Phys. Rev. Lett. 48 (1982) 1220 [INSPIRE].

    ADS  Article  Google Scholar 

  4. [4]

    J.A. Tyson, G.P. Kochanski and I.P. Dell’Antonio, Detailed mass map of CL0024+1654 from strong lensing, Astrophys. J. 498 (1998) L107 [astro-ph/9801193] [INSPIRE].

  5. [5]

    H. Dahle, A compilation of weak gravitational lensing studies of clusters of galaxies, astro-ph/0701598 [INSPIRE].

  6. [6]

    B. Paczynski, Gravitational microlensing by the galactic halo, Astrophys. J. 304 (1986) 1 [INSPIRE].

    ADS  Article  Google Scholar 

  7. [7]

    M. Taoso, G. Bertone and A. Masiero, Dark Matter Candidates: A Ten-Point Test, JCAP 03 (2008) 022 [arXiv:0711.4996] [INSPIRE].

    ADS  Article  Google Scholar 

  8. [8]

    S. Gariazzo, M. Archidiacono, P.F. de Salas, O. Mena, C.A. Ternes and M. Tórtola, Neutrino masses and their ordering: Global Data, Priors and Models, JCAP 03 (2018) 011 [arXiv:1801.04946] [INSPIRE].

    ADS  Article  Google Scholar 

  9. [9]

    R.N. Mohapatra and A.Y. Smirnov, Neutrino Mass and New Physics, Ann. Rev. Nucl. Part. Sci. 56 (2006) 569 [hep-ph/0603118] [INSPIRE].

  10. [10]

    A. de Gouvêa, Neutrino Mass Models, Ann. Rev. Nucl. Part. Sci. 66 (2016) 197 [INSPIRE].

    ADS  Article  Google Scholar 

  11. [11]

    A.D. Sakharov, Violation of CP Invariance, C asymmetry and baryon asymmetry of the universe, Pisma Zh. Eksp. Teor. Fiz. 5 (1967) 32 [JETP Lett. 5 (1967) 24] [Sov. Phys. Usp. 34 (1991) 392] [Usp. Fiz. Nauk 161 (1991) 61] [INSPIRE].

  12. [12]

    J.M. Cline, Baryogenesis, in Les Houches Summer School — Session 86: Particle Physics and Cosmology: The Fabric of Spacetime Les Houches, France, July 31 – August 25, 2006, hep-ph/0609145 [INSPIRE].

  13. [13]

    S. Davidson, E. Nardi and Y. Nir, Leptogenesis, Phys. Rept. 466 (2008) 105 [arXiv:0802.2962] [INSPIRE].

    ADS  Article  Google Scholar 

  14. [14]

    E.K. Akhmedov, V.A. Rubakov and A. Yu. Smirnov, Baryogenesis via neutrino oscillations, Phys. Rev. Lett. 81 (1998) 1359 [hep-ph/9803255] [INSPIRE].

  15. [15]

    G. Panotopoulos, A brief note on how to unify dark matter, dark energy and inflation, Phys. Rev. D 75 (2007) 127301 [arXiv:0706.2237] [INSPIRE].

    ADS  Google Scholar 

  16. [16]

    V.H. Cardenas, Inflation, Reheating and Dark Matter, Phys. Rev. D 75 (2007) 083512 [astro-ph/0701624] [INSPIRE].

  17. [17]

    A.R. Liddle, C. Pahud and L.A. Urena-Lopez, Triple unification of inflation, dark matter and dark energy using a single field, Phys. Rev. D 77 (2008) 121301 [arXiv:0804.0869] [INSPIRE].

    ADS  Google Scholar 

  18. [18]

    N. Bose and A.S. Majumdar, Unified Model of k-Inflation, Dark Matter & Dark Energy, Phys. Rev. D 80 (2009) 103508 [arXiv:0907.2330] [INSPIRE].

    ADS  Google Scholar 

  19. [19]

    R.N. Lerner and J. McDonald, Gauge singlet scalar as inflaton and thermal relic dark matter, Phys. Rev. D 80 (2009) 123507 [arXiv:0909.0520] [INSPIRE].

    ADS  Google Scholar 

  20. [20]

    N. Okada and Q. Shafi, WIMP Dark Matter Inflation with Observable Gravity Waves, Phys. Rev. D 84 (2011) 043533 [arXiv:1007.1672] [INSPIRE].

    ADS  Google Scholar 

  21. [21]

    J. De-Santiago and J.L. Cervantes-Cota, Generalizing a Unified Model of Dark Matter, Dark Energy and Inflation with Non Canonical Kinetic Term, Phys. Rev. D 83 (2011) 063502 [arXiv:1102.1777] [INSPIRE].

    ADS  Google Scholar 

  22. [22]

    V.V. Khoze, Inflation and Dark Matter in the Higgs Portal of Classically Scale Invariant Standard Model, JHEP 11 (2013) 215 [arXiv:1308.6338] [INSPIRE].

    ADS  Article  Google Scholar 

  23. [23]

    T. Tenkanen, Feebly Interacting Dark Matter Particle as the Inflaton, JHEP 09 (2016) 049 [arXiv:1607.01379] [INSPIRE].

    ADS  Article  Google Scholar 

  24. [24]

    R. Daido, F. Takahashi and W. Yin, The ALP miracle: unified inflaton and dark matter, JCAP 05 (2017) 044 [arXiv:1702.03284] [INSPIRE].

    ADS  Article  Google Scholar 

  25. [25]

    R. Daido, F. Takahashi and W. Yin, The ALP miracle revisited, JHEP 02 (2018) 104 [arXiv:1710.11107] [INSPIRE].

    ADS  Article  Google Scholar 

  26. [26]

    D. Hooper, G. Krnjaic, A.J. Long and S.D. Mcdermott, WIMPflation, arXiv:1807.03308 [INSPIRE].

  27. [27]

    D. Borah, P.S.B. Dev and A. Kumar, TeV Scale Leptogenesis, Inflaton Dark Matter and Neutrino Mass in Scotogenic Model, arXiv:1810.03645 [INSPIRE].

  28. [28]

    A.E. Bernardini and O. Bertolami, Perturbative approach for mass varying neutrinos coupled to the dark sector in the generalized Chaplygin gas scenario, Phys. Rev. D 77 (2008) 083506 [arXiv:0712.1534] [INSPIRE].

    ADS  Google Scholar 

  29. [29]

    A.E. Bernardini and O. Bertolami, Stationary condition in a perturbative approach for mass varying neutrinos, Phys. Lett. B 662 (2008) 97 [arXiv:0802.4449] [INSPIRE].

    ADS  Article  Google Scholar 

  30. [30]

    M. Bastero-Gil, R. Cerezo and J.G. Rosa, Inflaton dark matter from incomplete decay, Phys. Rev. D 93 (2016) 103531 [arXiv:1501.05539] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  31. [31]

    Planck collaboration, Planck 2015 results. XIII. Cosmological parameters, Astron. Astrophys. 594 (2016) A13 [arXiv:1502.01589] [INSPIRE].

  32. [32]

    A.A. Starobinsky, A New Type of Isotropic Cosmological Models Without Singularity, Phys. Lett. B 91 (1980) 99 [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  33. [33]

    S. Bartrum, M. Bastero-Gil, A. Berera, R. Cerezo, R.O. Ramos and J.G. Rosa, The importance of being warm (during inflation), Phys. Lett. B 732 (2014) 116 [arXiv:1307.5868] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  34. [34]

    M. Bastero-Gil, A. Berera, R.O. Ramos and J.G. Rosa, Warm Little Inflaton, Phys. Rev. Lett. 117 (2016) 151301 [arXiv:1604.08838] [INSPIRE].

    ADS  Article  Google Scholar 

  35. [35]

    M. Postma and M. Volponi, Equivalence of the Einstein and Jordan frames, Phys. Rev. D 90 (2014) 103516 [arXiv:1407.6874] [INSPIRE].

  36. [36]

    F.L. Bezrukov and M. Shaposhnikov, The Standard Model Higgs boson as the inflaton, Phys. Lett. B 659 (2008) 703 [arXiv:0710.3755] [INSPIRE].

    ADS  Article  Google Scholar 

  37. [37]

    K. Ichikawa, T. Suyama, T. Takahashi and M. Yamaguchi, Primordial Curvature Fluctuation and Its Non-Gaussianity in Models with Modulated Reheating, Phys. Rev. D 78 (2008) 063545 [arXiv:0807.3988] [INSPIRE].

    ADS  Google Scholar 

  38. [38]

    D.J.E. Marsh, Axion Cosmology, Phys. Rept. 643 (2016) 1 [arXiv:1510.07633] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  39. [39]

    S. Nurmi, T. Tenkanen and K. Tuominen, Inflationary Imprints on Dark Matter, JCAP 11 (2015) 001 [arXiv:1506.04048] [INSPIRE].

  40. [40]

    K. Kainulainen, S. Nurmi, T. Tenkanen, K. Tuominen and V. Vaskonen, Isocurvature Constraints on Portal Couplings, JCAP 06 (2016) 022 [arXiv:1601.07733] [INSPIRE].

    ADS  Article  Google Scholar 

  41. [41]

    O. Bertolami, C. Cosme and J.G. Rosa, Scalar field dark matter and the Higgs field, Phys. Lett. B 759 (2016) 1 [arXiv:1603.06242] [INSPIRE].

    ADS  Article  Google Scholar 

  42. [42]

    C. Cosme, J.G. Rosa and O. Bertolami, Scalar field dark matter with spontaneous symmetry breaking and the 3.5 keV line, Phys. Lett. B 781 (2018) 639 [arXiv:1709.09674] [INSPIRE].

  43. [43]

    C. Cosme, J.G. Rosa and O. Bertolami, Scale-invariant scalar field dark matter through the Higgs portal, JHEP 05 (2018) 129 [arXiv:1802.09434] [INSPIRE].

    ADS  Article  Google Scholar 

  44. [44]

    V.A. Rubakov and M.E. Shaposhnikov, Electroweak baryon number nonconservation in the early universe and in high-energy collisions, Usp. Fiz. Nauk 166 (1996) 493 [hep-ph/9603208] [INSPIRE].

  45. [45]

    Y. Nir, Introduction to leptogenesis, in 6th Rencontres du Vietnam: Challenges in Particle Astrophysics Hanoi, Vietnam, August 6–12, 2006, hep-ph/0702199 [INSPIRE].

  46. [46]

    S. Davidson and A. Ibarra, A lower bound on the right-handed neutrino mass from leptogenesis, Phys. Lett. B 535 (2002) 25 [hep-ph/0202239] [INSPIRE].

  47. [47]

    S.R. Coleman, The Uses of Instantons, Subnucl. Ser. 15 (1979) 805.

    Google Scholar 

  48. [48]

    Y. Burnier, M. Laine and M. Shaposhnikov, Baryon and lepton number violation rates across the electroweak crossover, JCAP 02 (2006) 007 [hep-ph/0511246] [INSPIRE].

  49. [49]

    T. Asaka, H.B. Nielsen and Y. Takanishi, Nonthermal leptogenesis from the heavier Majorana neutrinos, Nucl. Phys. B 647 (2002) 252 [hep-ph/0207023] [INSPIRE].

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Affiliations

Authors

Corresponding author

Correspondence to António Torres Manso.

Additional information

ArXiv ePrint: 1811.02302

Rights and permissions

This article is published under an open access license. Please check the 'Copyright Information' section for details of this license and what re-use is permitted. If your intended use exceeds what is permitted by the license or if you are unable to locate the licence and re-use information, please contact the Rights and Permissions team.

About this article

Verify currency and authenticity via CrossMark

Cite this article

Manso, A.T., Rosa, J.G. ν-inflaton dark matter. J. High Energ. Phys. 2019, 20 (2019). https://doi.org/10.1007/JHEP02(2019)020

Download citation

Keywords

  • Beyond Standard Model
  • Cosmology of Theories beyond the SM
  • CP violation
  • Neutrino Physics