Skip to main content

Advertisement

SpringerLink
  • Journal of High Energy Physics
  • Journal Aims and Scope
  • Submit to this journal
Minimal anomalous U(1) theories and collider phenomenology
Download PDF
Your article has downloaded

Similar articles being viewed by others

Slider with three articles shown per slide. Use the Previous and Next buttons to navigate the slides or the slide controller buttons at the end to navigate through each slide.

Probing new U(1) gauge symmetries via exotic Z → Z′γ decays

11 March 2021

Lisa Michaels & Felix Yu

Low scale U(1)X gauge symmetry as an origin of dark matter, neutrino mass and flavour anomalies

09 December 2020

Debasish Borah, Lopamudra Mukherjee & Soumitra Nandi

Perturbativity constraints on U(1)B−L and left-right models and implications for heavy gauge boson searches

28 January 2019

Garv Chauhan, P. S. Bhupal Dev, … Yongchao Zhang

Searching for flavored gauge bosons

14 February 2019

Eung Jin Chun, Arindam Das, … Jongkuk Kim

B-anomalies from flavorful U(1) $$'$$ ′ extensions, safely

15 January 2022

Rigo Bause, Gudrun Hiller, … Tom Steudtner

Interplay of New Physics effects in (g − 2)ℓ and h → ℓ+ℓ− — lessons from SMEFT

16 June 2021

Svjetlana Fajfer, Jernej F. Kamenik & M. Tammaro

Road map through the desert: unification with vector-like fermions

11 December 2019

Kamila Kowalska & Dinesh Kumar

On (g − 2)μ from gauged U(1)X

15 July 2022

Admir Greljo, Peter Stangl, … Jure Zupan

Light mediators in anomaly free U (1)X models. Part II. Constraints on dark gauge bosons

31 October 2019

F. C. Correia & Svjetlana Fajfer

Download PDF
  • Regular Article - Theoretical Physics
  • Open Access
  • Published: 23 February 2018

Minimal anomalous U(1) theories and collider phenomenology

  • Andreas Ekstedt1,
  • Rikard Enberg1,
  • Gunnar Ingelman1,
  • Johan Löfgren  ORCID: orcid.org/0000-0001-7544-03321 &
  • …
  • Tanumoy Mandal1,2 

Journal of High Energy Physics volume 2018, Article number: 152 (2018) Cite this article

  • 279 Accesses

  • 8 Citations

  • 1 Altmetric

  • Metrics details

A preprint version of the article is available at arXiv.

Abstract

We study the collider phenomenology of a neutral gauge boson Z′ arising in minimal but anomalous U(1) extensions of the Standard Model (SM). To retain gauge invariance of physical observables, we consider cancellation of gauge anomalies through the Green-Schwarz mechanism. We categorize a wide class of U(1) extensions in terms of the new U(1) charges of the left-handed quarks and leptons and the Higgs doublet. We derive constraints on some benchmark models using electroweak precision constraints and the latest 13 TeV LHC dilepton and dijet resonance search data. We calculate the decay rates of the exotic and rare one-loop Z′ decays to ZZ and Z-photon modes, which are the unique signatures of our framework. If observed, these decays could hint at anomaly cancellation through the Green-Schwarz mechanism. We also discuss the possible observation of such signatures at the LHC and at future ILC colliders.

Download to read the full article text

Working on a manuscript?

Avoid the common mistakes

References

  1. T. Appelquist, B.A. Dobrescu and A.R. Hopper, Nonexotic neutral gauge bosons, Phys. Rev. D 68 (2003) 035012 [hep-ph/0212073] [INSPIRE].

  2. A. Ekstedt, R. Enberg, G. Ingelman, J. Löfgren and T. Mandal, Constraining minimal anomaly free U(1) extensions of the Standard Model, JHEP 11 (2016) 071 [arXiv:1605.04855] [INSPIRE].

    Article  ADS  Google Scholar 

  3. M.B. Green and J.H. Schwarz, Anomaly Cancellation in Supersymmetric D = 10 Gauge Theory and Superstring Theory, Phys. Lett. 149B (1984) 117 [INSPIRE].

  4. I. Antoniadis, A. Boyarsky and O. Ruchayskiy, Anomaly driven signatures of extra U(1)’s, AIP Conf. Proc. 1200 (2010) 64 [INSPIRE].

    Article  ADS  Google Scholar 

  5. P. Anastasopoulos, M. Bianchi, E. Dudas and E. Kiritsis, Anomalies, anomalous U(1)’s and generalized Chern-Simons terms, JHEP 11 (2006) 057 [hep-th/0605225] [INSPIRE].

  6. C. Corianò, N. Irges and E. Kiritsis, On the effective theory of low scale orientifold string vacua, Nucl. Phys. B 746 (2006) 77 [hep-ph/0510332] [INSPIRE].

  7. P. Anastasopoulos, F. Fucito, A. Lionetto, G. Pradisi, A. Racioppi and Y.S. Stanev, Minimal Anomalous U(1)-prime Extension of the MSSM, Phys. Rev. D 78 (2008) 085014 [arXiv:0804.1156] [INSPIRE].

  8. R. Armillis, C. Corianò, M. Guzzi and S. Morelli, An Anomalous Extra Z Prime from Intersecting Branes with Drell-Yan and Direct Photons at the LHC, Nucl. Phys. B 814 (2009) 156 [arXiv:0809.3772] [INSPIRE].

  9. N. Irges, C. Corianò and S. Morelli, Stuckelberg Axions and the Effective Action of Anomalous Abelian Models 2. A SU(3)C × SU(2)W × U(1)Y × U(1)B model and its signature at the LHC, Nucl. Phys. B 789 (2008) 133 [hep-ph/0703127] [INSPIRE].

  10. A. Ismail, A. Katz and D. Racco, On dark matter interactions with the Standard Model through an anomalous Z ′, JHEP 10 (2017) 165 [arXiv:1707.00709] [INSPIRE].

  11. J.A. Dror, R. Lasenby and M. Pospelov, New constraints on light vectors coupled to anomalous currents, Phys. Rev. Lett. 119 (2017) 141803 [arXiv:1705.06726] [INSPIRE].

    Article  ADS  Google Scholar 

  12. J.A. Dror, R. Lasenby and M. Pospelov, Dark forces coupled to nonconserved currents, Phys. Rev. D 96 (2017) 075036 [arXiv:1707.01503] [INSPIRE].

  13. A. Ismail and A. Katz, Anomalous Z ′ and Diboson Resonances at the LHC, arXiv:1712.01840 [INSPIRE].

  14. S. Weinberg, The quantum theory of fields: Vol. 2, Modern applications, Cambridge University Press, Cambridge U.K. (1996).

  15. S.L. Adler and W.A. Bardeen, Absence of higher order corrections in the anomalous axial vector divergence equation, Phys. Rev. 182 (1969) 1517 [INSPIRE].

    Article  ADS  Google Scholar 

  16. S.L. Adler, Axial vector vertex in spinor electrodynamics, Phys. Rev. 177 (1969) 2426 [INSPIRE].

    Article  ADS  Google Scholar 

  17. K. Fujikawa, Path Integral Measure for Gauge Invariant Fermion Theories, Phys. Rev. Lett. 42 (1979) 1195 [INSPIRE].

    Article  ADS  Google Scholar 

  18. K. Fujikawa, Path Integral for Gauge Theories with Fermions, Phys. Rev. D 21 (1980) 2848 [Erratum ibid. D 22 (1980) 1499] [INSPIRE].

  19. A. Bilal, Lectures on Anomalies, arXiv:0802.0634 [INSPIRE].

  20. E.C.G. Stueckelberg, Interaction energy in electrodynamics and in the field theory of nuclear forces, Helv. Phys. Acta 11 (1938) 225 [INSPIRE].

    Google Scholar 

  21. R.D. Peccei and H.R. Quinn, CP Conservation in the Presence of Instantons, Phys. Rev. Lett. 38 (1977) 1440 [INSPIRE].

    Article  ADS  Google Scholar 

  22. C.D. Carone and H. Murayama, Realistic models with a light U(1) gauge boson coupled to baryon number, Phys. Rev. D 52 (1995) 484 [hep-ph/9501220] [INSPIRE].

  23. A. Aranda, E. Jiménez and C.A. Vaquera-Araujo, Electroweak phase transition in a model with gauged lepton number, JHEP 01 (2015) 070 [arXiv:1410.7508] [INSPIRE].

    Article  ADS  Google Scholar 

  24. R.N. Mohapatra and G. Senjanović, Spontaneous Breaking of Global B − l Symmetry and Matter-Antimatter Oscillations in Grand Unified Theories, Phys. Rev. D 27 (1983) 254 [INSPIRE].

  25. J. Erler and P. Langacker, Constraints on extended neutral gauge structures, Phys. Lett. B 456 (1999) 68 [hep-ph/9903476] [INSPIRE].

  26. A. De Rujula, H. Georgi and S.L. Glashow, Flavor goniometry by proton decay, Phys. Rev. Lett. 45 (1980) 413 [INSPIRE].

    Article  ADS  Google Scholar 

  27. J. Alwall et al., The automated computation of tree-level and next-to-leading order differential cross sections and their matching to parton shower simulations, JHEP 07 (2014) 079 [arXiv:1405.0301] [INSPIRE].

    Article  ADS  Google Scholar 

  28. V. Shtabovenko, R. Mertig and F. Orellana, New Developments in FeynCalc 9.0, Comput. Phys. Commun. 207 (2016) 432 [arXiv:1601.01167] [INSPIRE].

  29. R. Mertig, M. Böhm and A. Denner, FEYN CALC: Computer algebraic calculation of Feynman amplitudes, Comput. Phys. Commun. 64 (1991) 345 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  30. A. Alloul, N.D. Christensen, C. Degrande, C. Duhr and B. Fuks, FeynRules 2.0 — A complete toolbox for tree-level phenomenology, Comput. Phys. Commun. 185 (2014) 2250 [arXiv:1310.1921] [INSPIRE].

  31. J. Kublbeck, M. Böhm and A. Denner, Feyn Arts: Computer Algebraic Generation of Feynman Graphs and Amplitudes, Comput. Phys. Commun. 60 (1990) 165 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  32. T. Hahn, Generating Feynman diagrams and amplitudes with FeynArts 3, Comput. Phys. Commun. 140 (2001) 418 [hep-ph/0012260] [INSPIRE].

  33. H.H. Patel, Package-X: A Mathematica package for the analytic calculation of one-loop integrals, Comput. Phys. Commun. 197 (2015) 276 [arXiv:1503.01469] [INSPIRE].

  34. V. Shtabovenko, FeynHelpers: Connecting FeynCalc to FIRE and Package-X, Comput. Phys. Commun. 218 (2017) 48 [arXiv:1611.06793] [INSPIRE].

    Article  ADS  Google Scholar 

  35. L. Rosenberg, Electromagnetic interactions of neutrinos, Phys. Rev. 129 (1963) 2786 [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  36. R.D. Ball et al., Parton distributions with LHC data, Nucl. Phys. B 867 (2013) 244 [arXiv:1207.1303] [INSPIRE].

  37. K. Gumus, N. Akchurin, S. Esen and R.M. Harris, CMS Sensitivity to Dijet Resonances, CMS-NOTE-2006-070 (2006).

  38. ATLAS collaboration, Search for new high-mass phenomena in the dilepton final state using 36 fb −1 of proton-proton collision data at \( \sqrt{s}=13 \) TeV with the ATLAS detector, JHEP 10 (2017) 182 [arXiv:1707.02424] [INSPIRE].

  39. ATLAS collaboration, Search for new phenomena in dijet events using 37 fb −1 of pp collision data collected at \( \sqrt{s}=13 \) TeV with the ATLAS detector, Phys. Rev. D 96 (2017) 052004 [arXiv:1703.09127] [INSPIRE].

  40. CMS collaboration, Searches for dijet resonances in pp collisions at \( \sqrt{s}=13 \) TeV using data collected in 2016, CMS-PAS-EXO-16-056 (2017).

  41. Particle Data Group collaboration, C. Patrignani et al., Review of Particle Physics, Chin. Phys. C 40 (2016) 100001 [INSPIRE].

  42. F. Del Aguila and M. Cvetic, Diagnostic power of future colliders for Z-prime couplings to quarks and leptons: e + e − versus p p colliders, Phys. Rev. D 50 (1994) 3158 [hep-ph/9312329] [INSPIRE].

  43. S. Godfrey, Comparison of discovery limits for extra Z bosons at future colliders, Phys. Rev. D 51 (1995) 1402 [hep-ph/9411237] [INSPIRE].

  44. F. Del Aguila, M. Cvetic and P. Langacker, Reconstruction of the extended gauge structure from Z-prime observables at future colliders, Phys. Rev. D 52 (1995) 37 [hep-ph/9501390] [INSPIRE].

  45. S. Godfrey, P. Kalyniak and A. Tomkins, Distinguishing between models with extra gauge bosons at the ILC, in Proceedings of 2005 International Linear Collider Physics and Detector Workshop and 2nd ILC Accelerator Workshop, Snowmass U.S.A. (2005), http://www.slac.stanford.edu/econf/C0508141 [hep-ph/0511335] [INSPIRE].

  46. P. Osland, A.A. Pankov and A.V. Tsytrinov, Identification of extra neutral gauge bosons at the International Linear Collider, Eur. Phys. J. C 67 (2010) 191 [arXiv:0912.2806] [INSPIRE].

  47. M. Battaglia, F. Coradeschi, S. De Curtis and D. Dominici, Indirect Sensitivity to Heavy Z’ Bosons at a Multi-TeV e + e − Collider, arXiv:1203.0416 [INSPIRE].

  48. T. Han, P. Langacker, Z. Liu and L.-T. Wang, Diagnosis of a New Neutral Gauge Boson at the LHC and ILC for Snowmass 2013, arXiv:1308.2738 [INSPIRE].

  49. G. ’t Hooft and M.J.G. Veltman, Regularization and Renormalization of Gauge Fields, Nucl. Phys. B 44 (1972) 189 [INSPIRE].

  50. P. Breitenlohner and D. Maison, Dimensional Renormalization and the Action Principle, Commun. Math. Phys. 52 (1977) 11 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  51. E.-C. Tsai, Maintaining Gauge Symmetry in Renormalizing Chiral Gauge Theories, Phys. Rev. D 83 (2011) 065011 [arXiv:1012.3501] [INSPIRE].

  52. D. Sánchez-Ruiz, BRS symmetry restoration of chiral Abelian Higgs-Kibble theory in dimensional renormalization with a nonanticommuting γ 5, Phys. Rev. D 68 (2003) 025009 [hep-th/0209023] [INSPIRE].

  53. C.P. Martin and D. Sánchez-Ruiz, Action principles, restoration of BRS symmetry and the renormalization group equation for chiral nonAbelian gauge theories in dimensional renormalization with a nonanticommuting γ 5, Nucl. Phys. B 572 (2000) 387 [hep-th/9905076] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  54. G. Passarino and M.J.G. Veltman, One Loop Corrections for e + e − Annihilation Into μ + μ − in the Weinberg Model, Nucl. Phys. B 160 (1979) 151 [INSPIRE].

  55. G. ’t Hooft and M.J.G. Veltman, Scalar One Loop Integrals, Nucl. Phys. B 153 (1979) 365 [INSPIRE].

  56. R.D. Carlitz, J.C. Collins and A.H. Mueller, The Role of the Axial Anomaly in Measuring Spin Dependent Parton Distributions, Phys. Lett. B 214 (1988) 229 [INSPIRE].

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Authors and Affiliations

  1. Department of Physics and Astronomy, Uppsala University, Box 516, SE-751 20, Uppsala, Sweden

    Andreas Ekstedt, Rikard Enberg, Gunnar Ingelman, Johan Löfgren & Tanumoy Mandal

  2. Department of Physics and Astrophysics, University of Delhi, Delhi, 110007, India

    Tanumoy Mandal

Authors
  1. Andreas Ekstedt
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Rikard Enberg
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Gunnar Ingelman
    View author publications

    You can also search for this author in PubMed Google Scholar

  4. Johan Löfgren
    View author publications

    You can also search for this author in PubMed Google Scholar

  5. Tanumoy Mandal
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Rikard Enberg.

Additional information

ArXiv ePrint: 1712.03410

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ekstedt, A., Enberg, R., Ingelman, G. et al. Minimal anomalous U(1) theories and collider phenomenology. J. High Energ. Phys. 2018, 152 (2018). https://doi.org/10.1007/JHEP02(2018)152

Download citation

  • Received: 20 December 2017

  • Accepted: 12 February 2018

  • Published: 23 February 2018

  • DOI: https://doi.org/10.1007/JHEP02(2018)152

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Beyond Standard Model
  • Gauge Symmetry
Download PDF

Working on a manuscript?

Avoid the common mistakes

Advertisement

Over 10 million scientific documents at your fingertips

Switch Edition
  • Academic Edition
  • Corporate Edition
  • Home
  • Impressum
  • Legal information
  • Privacy statement
  • California Privacy Statement
  • How we use cookies
  • Manage cookies/Do not sell my data
  • Accessibility
  • FAQ
  • Contact us
  • Affiliate program

Not affiliated

Springer Nature

© 2023 Springer Nature Switzerland AG. Part of Springer Nature.