Abstract
We study the collider phenomenology of a neutral gauge boson Z′ arising in minimal but anomalous U(1) extensions of the Standard Model (SM). To retain gauge invariance of physical observables, we consider cancellation of gauge anomalies through the Green-Schwarz mechanism. We categorize a wide class of U(1) extensions in terms of the new U(1) charges of the left-handed quarks and leptons and the Higgs doublet. We derive constraints on some benchmark models using electroweak precision constraints and the latest 13 TeV LHC dilepton and dijet resonance search data. We calculate the decay rates of the exotic and rare one-loop Z′ decays to ZZ and Z-photon modes, which are the unique signatures of our framework. If observed, these decays could hint at anomaly cancellation through the Green-Schwarz mechanism. We also discuss the possible observation of such signatures at the LHC and at future ILC colliders.
References
T. Appelquist, B.A. Dobrescu and A.R. Hopper, Nonexotic neutral gauge bosons, Phys. Rev. D 68 (2003) 035012 [hep-ph/0212073] [INSPIRE].
A. Ekstedt, R. Enberg, G. Ingelman, J. Löfgren and T. Mandal, Constraining minimal anomaly free U(1) extensions of the Standard Model, JHEP 11 (2016) 071 [arXiv:1605.04855] [INSPIRE].
M.B. Green and J.H. Schwarz, Anomaly Cancellation in Supersymmetric D = 10 Gauge Theory and Superstring Theory, Phys. Lett. 149B (1984) 117 [INSPIRE].
I. Antoniadis, A. Boyarsky and O. Ruchayskiy, Anomaly driven signatures of extra U(1)’s, AIP Conf. Proc. 1200 (2010) 64 [INSPIRE].
P. Anastasopoulos, M. Bianchi, E. Dudas and E. Kiritsis, Anomalies, anomalous U(1)’s and generalized Chern-Simons terms, JHEP 11 (2006) 057 [hep-th/0605225] [INSPIRE].
C. Corianò, N. Irges and E. Kiritsis, On the effective theory of low scale orientifold string vacua, Nucl. Phys. B 746 (2006) 77 [hep-ph/0510332] [INSPIRE].
P. Anastasopoulos, F. Fucito, A. Lionetto, G. Pradisi, A. Racioppi and Y.S. Stanev, Minimal Anomalous U(1)-prime Extension of the MSSM, Phys. Rev. D 78 (2008) 085014 [arXiv:0804.1156] [INSPIRE].
R. Armillis, C. Corianò, M. Guzzi and S. Morelli, An Anomalous Extra Z Prime from Intersecting Branes with Drell-Yan and Direct Photons at the LHC, Nucl. Phys. B 814 (2009) 156 [arXiv:0809.3772] [INSPIRE].
N. Irges, C. Corianò and S. Morelli, Stuckelberg Axions and the Effective Action of Anomalous Abelian Models 2. A SU(3)C × SU(2)W × U(1)Y × U(1)B model and its signature at the LHC, Nucl. Phys. B 789 (2008) 133 [hep-ph/0703127] [INSPIRE].
A. Ismail, A. Katz and D. Racco, On dark matter interactions with the Standard Model through an anomalous Z ′, JHEP 10 (2017) 165 [arXiv:1707.00709] [INSPIRE].
J.A. Dror, R. Lasenby and M. Pospelov, New constraints on light vectors coupled to anomalous currents, Phys. Rev. Lett. 119 (2017) 141803 [arXiv:1705.06726] [INSPIRE].
J.A. Dror, R. Lasenby and M. Pospelov, Dark forces coupled to nonconserved currents, Phys. Rev. D 96 (2017) 075036 [arXiv:1707.01503] [INSPIRE].
A. Ismail and A. Katz, Anomalous Z ′ and Diboson Resonances at the LHC, arXiv:1712.01840 [INSPIRE].
S. Weinberg, The quantum theory of fields: Vol. 2, Modern applications, Cambridge University Press, Cambridge U.K. (1996).
S.L. Adler and W.A. Bardeen, Absence of higher order corrections in the anomalous axial vector divergence equation, Phys. Rev. 182 (1969) 1517 [INSPIRE].
S.L. Adler, Axial vector vertex in spinor electrodynamics, Phys. Rev. 177 (1969) 2426 [INSPIRE].
K. Fujikawa, Path Integral Measure for Gauge Invariant Fermion Theories, Phys. Rev. Lett. 42 (1979) 1195 [INSPIRE].
K. Fujikawa, Path Integral for Gauge Theories with Fermions, Phys. Rev. D 21 (1980) 2848 [Erratum ibid. D 22 (1980) 1499] [INSPIRE].
A. Bilal, Lectures on Anomalies, arXiv:0802.0634 [INSPIRE].
E.C.G. Stueckelberg, Interaction energy in electrodynamics and in the field theory of nuclear forces, Helv. Phys. Acta 11 (1938) 225 [INSPIRE].
R.D. Peccei and H.R. Quinn, CP Conservation in the Presence of Instantons, Phys. Rev. Lett. 38 (1977) 1440 [INSPIRE].
C.D. Carone and H. Murayama, Realistic models with a light U(1) gauge boson coupled to baryon number, Phys. Rev. D 52 (1995) 484 [hep-ph/9501220] [INSPIRE].
A. Aranda, E. Jiménez and C.A. Vaquera-Araujo, Electroweak phase transition in a model with gauged lepton number, JHEP 01 (2015) 070 [arXiv:1410.7508] [INSPIRE].
R.N. Mohapatra and G. Senjanović, Spontaneous Breaking of Global B − l Symmetry and Matter-Antimatter Oscillations in Grand Unified Theories, Phys. Rev. D 27 (1983) 254 [INSPIRE].
J. Erler and P. Langacker, Constraints on extended neutral gauge structures, Phys. Lett. B 456 (1999) 68 [hep-ph/9903476] [INSPIRE].
A. De Rujula, H. Georgi and S.L. Glashow, Flavor goniometry by proton decay, Phys. Rev. Lett. 45 (1980) 413 [INSPIRE].
J. Alwall et al., The automated computation of tree-level and next-to-leading order differential cross sections and their matching to parton shower simulations, JHEP 07 (2014) 079 [arXiv:1405.0301] [INSPIRE].
V. Shtabovenko, R. Mertig and F. Orellana, New Developments in FeynCalc 9.0, Comput. Phys. Commun. 207 (2016) 432 [arXiv:1601.01167] [INSPIRE].
R. Mertig, M. Böhm and A. Denner, FEYN CALC: Computer algebraic calculation of Feynman amplitudes, Comput. Phys. Commun. 64 (1991) 345 [INSPIRE].
A. Alloul, N.D. Christensen, C. Degrande, C. Duhr and B. Fuks, FeynRules 2.0 — A complete toolbox for tree-level phenomenology, Comput. Phys. Commun. 185 (2014) 2250 [arXiv:1310.1921] [INSPIRE].
J. Kublbeck, M. Böhm and A. Denner, Feyn Arts: Computer Algebraic Generation of Feynman Graphs and Amplitudes, Comput. Phys. Commun. 60 (1990) 165 [INSPIRE].
T. Hahn, Generating Feynman diagrams and amplitudes with FeynArts 3, Comput. Phys. Commun. 140 (2001) 418 [hep-ph/0012260] [INSPIRE].
H.H. Patel, Package-X: A Mathematica package for the analytic calculation of one-loop integrals, Comput. Phys. Commun. 197 (2015) 276 [arXiv:1503.01469] [INSPIRE].
V. Shtabovenko, FeynHelpers: Connecting FeynCalc to FIRE and Package-X, Comput. Phys. Commun. 218 (2017) 48 [arXiv:1611.06793] [INSPIRE].
L. Rosenberg, Electromagnetic interactions of neutrinos, Phys. Rev. 129 (1963) 2786 [INSPIRE].
R.D. Ball et al., Parton distributions with LHC data, Nucl. Phys. B 867 (2013) 244 [arXiv:1207.1303] [INSPIRE].
K. Gumus, N. Akchurin, S. Esen and R.M. Harris, CMS Sensitivity to Dijet Resonances, CMS-NOTE-2006-070 (2006).
ATLAS collaboration, Search for new high-mass phenomena in the dilepton final state using 36 fb −1 of proton-proton collision data at \( \sqrt{s}=13 \) TeV with the ATLAS detector, JHEP 10 (2017) 182 [arXiv:1707.02424] [INSPIRE].
ATLAS collaboration, Search for new phenomena in dijet events using 37 fb −1 of pp collision data collected at \( \sqrt{s}=13 \) TeV with the ATLAS detector, Phys. Rev. D 96 (2017) 052004 [arXiv:1703.09127] [INSPIRE].
CMS collaboration, Searches for dijet resonances in pp collisions at \( \sqrt{s}=13 \) TeV using data collected in 2016, CMS-PAS-EXO-16-056 (2017).
Particle Data Group collaboration, C. Patrignani et al., Review of Particle Physics, Chin. Phys. C 40 (2016) 100001 [INSPIRE].
F. Del Aguila and M. Cvetic, Diagnostic power of future colliders for Z-prime couplings to quarks and leptons: e + e − versus p p colliders, Phys. Rev. D 50 (1994) 3158 [hep-ph/9312329] [INSPIRE].
S. Godfrey, Comparison of discovery limits for extra Z bosons at future colliders, Phys. Rev. D 51 (1995) 1402 [hep-ph/9411237] [INSPIRE].
F. Del Aguila, M. Cvetic and P. Langacker, Reconstruction of the extended gauge structure from Z-prime observables at future colliders, Phys. Rev. D 52 (1995) 37 [hep-ph/9501390] [INSPIRE].
S. Godfrey, P. Kalyniak and A. Tomkins, Distinguishing between models with extra gauge bosons at the ILC, in Proceedings of 2005 International Linear Collider Physics and Detector Workshop and 2nd ILC Accelerator Workshop, Snowmass U.S.A. (2005), http://www.slac.stanford.edu/econf/C0508141 [hep-ph/0511335] [INSPIRE].
P. Osland, A.A. Pankov and A.V. Tsytrinov, Identification of extra neutral gauge bosons at the International Linear Collider, Eur. Phys. J. C 67 (2010) 191 [arXiv:0912.2806] [INSPIRE].
M. Battaglia, F. Coradeschi, S. De Curtis and D. Dominici, Indirect Sensitivity to Heavy Z’ Bosons at a Multi-TeV e + e − Collider, arXiv:1203.0416 [INSPIRE].
T. Han, P. Langacker, Z. Liu and L.-T. Wang, Diagnosis of a New Neutral Gauge Boson at the LHC and ILC for Snowmass 2013, arXiv:1308.2738 [INSPIRE].
G. ’t Hooft and M.J.G. Veltman, Regularization and Renormalization of Gauge Fields, Nucl. Phys. B 44 (1972) 189 [INSPIRE].
P. Breitenlohner and D. Maison, Dimensional Renormalization and the Action Principle, Commun. Math. Phys. 52 (1977) 11 [INSPIRE].
E.-C. Tsai, Maintaining Gauge Symmetry in Renormalizing Chiral Gauge Theories, Phys. Rev. D 83 (2011) 065011 [arXiv:1012.3501] [INSPIRE].
D. Sánchez-Ruiz, BRS symmetry restoration of chiral Abelian Higgs-Kibble theory in dimensional renormalization with a nonanticommuting γ 5, Phys. Rev. D 68 (2003) 025009 [hep-th/0209023] [INSPIRE].
C.P. Martin and D. Sánchez-Ruiz, Action principles, restoration of BRS symmetry and the renormalization group equation for chiral nonAbelian gauge theories in dimensional renormalization with a nonanticommuting γ 5, Nucl. Phys. B 572 (2000) 387 [hep-th/9905076] [INSPIRE].
G. Passarino and M.J.G. Veltman, One Loop Corrections for e + e − Annihilation Into μ + μ − in the Weinberg Model, Nucl. Phys. B 160 (1979) 151 [INSPIRE].
G. ’t Hooft and M.J.G. Veltman, Scalar One Loop Integrals, Nucl. Phys. B 153 (1979) 365 [INSPIRE].
R.D. Carlitz, J.C. Collins and A.H. Mueller, The Role of the Axial Anomaly in Measuring Spin Dependent Parton Distributions, Phys. Lett. B 214 (1988) 229 [INSPIRE].
Open Access
This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.
Author information
Authors and Affiliations
Corresponding author
Additional information
ArXiv ePrint: 1712.03410
Rights and permissions
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
About this article
Cite this article
Ekstedt, A., Enberg, R., Ingelman, G. et al. Minimal anomalous U(1) theories and collider phenomenology. J. High Energ. Phys. 2018, 152 (2018). https://doi.org/10.1007/JHEP02(2018)152
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/JHEP02(2018)152
Keywords
- Beyond Standard Model
- Gauge Symmetry