Skip to main content
Springer Nature Link
Account
Menu
Find a journal Publish with us Track your research
Search
Cart
  1. Home
  2. Journal of High Energy Physics
  3. Article

Fibre inflation and α-attractors

  • Regular Article - Theoretical Physics
  • Open access
  • Published: 20 February 2018
  • Volume 2018, article number 117, (2018)
  • Cite this article
Download PDF

You have full access to this open access article

Journal of High Energy Physics Aims and scope Submit manuscript
Fibre inflation and α-attractors
Download PDF
  • Renata Kallosh1,2,
  • Andrei Linde1,2,
  • Diederik Roest3,
  • Alexander Westphal4 &
  • …
  • Yusuke Yamada  ORCID: orcid.org/0000-0003-2684-516X1 
  • 480 Accesses

  • 26 Citations

  • 2 Altmetric

  • Explore all metrics

A preprint version of the article is available at arXiv.

Abstract

Fibre inflation is a specific string theory construction based on the Large Volume Scenario that produces an inflationary plateau. We outline its relation to α-attractor models for inflation, with the cosmological sector originating from certain string theory corrections leading to α = 2 and α = 1/2. Above a certain field range, the steepening effect of higher-order corrections leads first to the breakdown of single-field slow-roll and after that to the onset of 2-field dynamics: the overall volume of the extra dimensions starts to participate in the effective dynamics. Finally, we propose effective supergravity models of fibre inflation based on an \( \overline{D3} \) uplift term with a nilpotent superfield. Specific moduli dependent \( \overline{D3} \) induced geometries lead to cosmological fibre models but have in addition a de Sitter minimum exit. These supergravity models motivated by fibre inflation are relatively simple, stabilize the axions and disentangle the Hubble parameter from supersymmetry breaking.

Article PDF

Download to read the full article text

Similar content being viewed by others

Chiral global embedding of fibre inflation models

Article Open access 30 November 2017

Starobinsky inflation from string theory?

Article Open access 06 September 2023

Swampland distance conjecture, inflation and α-attractors

Article Open access 28 August 2019
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

References

  1. Planck collaboration, P.A.R. Ade et al., Planck 2013 results. XXII. Constraints on inflation, Astron. Astrophys. 571 (2014) A22 [arXiv:1303.5082] [INSPIRE].

  2. Planck collaboration, P.A.R. Ade et al., Planck 2015 results. XX. Constraints on inflation, Astron. Astrophys. 594 (2016) A20 [arXiv:1502.02114] [INSPIRE].

  3. R. Kallosh, A. Linde and D. Roest, Superconformal Inflationary α-Attractors, JHEP 11 (2013) 198 [arXiv:1311.0472] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. M. Galante, R. Kallosh, A. Linde and D. Roest, Unity of Cosmological Inflation Attractors, Phys. Rev. Lett. 114 (2015) 141302 [arXiv:1412.3797] [INSPIRE].

    Article  ADS  Google Scholar 

  5. J.J.M. Carrasco, R. Kallosh, A. Linde and D. Roest, Hyperbolic geometry of cosmological attractors, Phys. Rev. D 92 (2015) 041301 [arXiv:1504.05557] [INSPIRE].

    ADS  Google Scholar 

  6. S. Ferrara and R. Kallosh, Seven-disk manifold, α-attractors and B modes, Phys. Rev. D 94 (2016) 126015 [arXiv:1610.04163] [INSPIRE].

    ADS  Google Scholar 

  7. R. Kallosh, A. Linde, T. Wrase and Y. Yamada, Maximal Supersymmetry and B-Mode Targets, JHEP 04 (2017) 144 [arXiv:1704.04829] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. R. Kallosh, A. Linde, D. Roest and Y. Yamada, \( \overline{D3} \) induced geometric inflation, JHEP 07 (2017) 057 [arXiv:1705.09247] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. V. Balasubramanian, P. Berglund, J.P. Conlon and F. Quevedo, Systematics of moduli stabilisation in Calabi-Yau flux compactifications, JHEP 03 (2005) 007 [hep-th/0502058] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  10. M. Cicoli, C.P. Burgess and F. Quevedo, Fibre Inflation: Observable Gravity Waves from IIB String Compactifications, JCAP 03 (2009) 013 [arXiv:0808.0691] [INSPIRE].

    Article  ADS  Google Scholar 

  11. C.P. Burgess, M. Cicoli, S. de Alwis and F. Quevedo, Robust Inflation from Fibrous Strings, JCAP 05 (2016) 032 [arXiv:1603.06789] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  12. G. von Gersdorff and A. Hebecker, Kähler corrections for the volume modulus of flux compactifications, Phys. Lett. B 624 (2005) 270 [hep-th/0507131] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  13. M. Berg, M. Haack and B. Körs, String loop corrections to Kähler potentials in orientifolds, JHEP 11 (2005) 030 [hep-th/0508043] [INSPIRE].

    Article  ADS  Google Scholar 

  14. M. Berg, M. Haack and E. Pajer, Jumping Through Loops: On Soft Terms from Large Volume Compactifications, JHEP 09 (2007) 031 [arXiv:0704.0737] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  15. D. Ciupke, J. Louis and A. Westphal, Higher-Derivative Supergravity and Moduli Stabilization, JHEP 10 (2015) 094 [arXiv:1505.03092] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  16. B.J. Broy, M. Galante, D. Roest and A. Westphal, Pole inflation: Shift symmetry and universal corrections, JHEP 12 (2015) 149 [arXiv:1507.02277] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  17. B.J. Broy, D. Ciupke, F.G. Pedro and A. Westphal, Starobinsky-Type Inflation from α ′ -Corrections, JCAP 01 (2016) 001 [arXiv:1509.00024] [INSPIRE].

    Article  ADS  Google Scholar 

  18. M. Cicoli, D. Ciupke, S. de Alwis and F. Muia, α ′ Inflation: moduli stabilisation and observable tensors from higher derivatives, JHEP 09 (2016) 026 [arXiv:1607.01395] [INSPIRE].

  19. E. McDonough and M. Scalisi, Inflation from Nilpotent Kähler Corrections, JCAP 11 (2016) 028 [arXiv:1609.00364] [INSPIRE].

    Article  ADS  Google Scholar 

  20. M. Cicoli, J.P. Conlon and F. Quevedo, Systematics of String Loop Corrections in Type IIB Calabi-Yau Flux Compactifications, JHEP 01 (2008) 052 [arXiv:0708.1873] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  21. M. Cicoli, F. Muia and P. Shukla, Global Embedding of Fibre Inflation Models, JHEP 11 (2016) 182 [arXiv:1611.04612] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  22. C.P. Burgess, M. Cicoli, F. Quevedo and M. Williams, Inflating with Large Effective Fields, JCAP 11 (2014) 045 [arXiv:1404.6236] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  23. F. Denef, Les Houches Lectures on Constructing String Vacua, Les Houches 87 (2008) 483 [arXiv:0803.1194] [INSPIRE].

    Article  Google Scholar 

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Authors and Affiliations

  1. Stanford Institute for Theoretical Physics and Department of Physics, Stanford University, Stanford, CA, 94305, U.S.A.

    Renata Kallosh, Andrei Linde & Yusuke Yamada

  2. Lorentz Institute for Theoretical Physics, University of Leiden, 2333CA, Leiden, The Netherlands

    Renata Kallosh & Andrei Linde

  3. Van Swinderen Institute for Particle Physics and Gravity, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands

    Diederik Roest

  4. Deutsches Elektronen-Synchrotron DESY, Theory Group, D-22603, Hamburg, Germany

    Alexander Westphal

Authors
  1. Renata Kallosh
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Andrei Linde
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Diederik Roest
    View author publications

    You can also search for this author in PubMed Google Scholar

  4. Alexander Westphal
    View author publications

    You can also search for this author in PubMed Google Scholar

  5. Yusuke Yamada
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Yusuke Yamada.

Additional information

ArXiv ePrint: 1707.05830

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kallosh, R., Linde, A., Roest, D. et al. Fibre inflation and α-attractors. J. High Energ. Phys. 2018, 117 (2018). https://doi.org/10.1007/JHEP02(2018)117

Download citation

  • Received: 25 July 2017

  • Revised: 27 December 2017

  • Accepted: 05 February 2018

  • Published: 20 February 2018

  • DOI: https://doi.org/10.1007/JHEP02(2018)117

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Cosmology of Theories beyond the SM
  • Supergravity Models
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us
  • Track your research

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Journal finder
  • Publish your research
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our imprints

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support
  • Cancel contracts here

Not affiliated

Springer Nature

© 2024 Springer Nature