Advertisement

Journal of High Energy Physics

, 2018:107 | Cite as

Simplified TeV leptophilic dark matter in light of DAMPE data

  • Guang Hua Duan
  • Lei Feng
  • Fei Wang
  • Lei WuEmail author
  • Jin Min Yang
  • Rui Zheng
Open Access
Regular Article - Theoretical Physics

Abstract

Using a simplified framework, we attempt to explain the recent DAMPE cosmic e+ + e flux excess by leptophilic Dirac fermion dark matter (LDM). The scalar (Φ0) and vector (Φ1) mediator fields connecting LDM and Standard Model particles are discussed. We find that the couplings PS, PP , VA and VV can produce the right bump in e+ + e flux for a DM mass around 1.5 TeV with a natural thermal annihilation cross-section < σv >∼ 3×10−26cm3/s today. Among them, VV coupling is tightly constrained by PandaX-II data (although LDM-nucleus scattering appears at one-loop level) and the surviving samples appear in the resonant region, \( {m_{\varPhi}}_{{}_1}\simeq 2{m}_{\chi } \). We also study the related collider signatures, such as dilepton production pp → Φ1 → ℓ+, and muon g − 2 anomaly. Finally, we present a possible U(1) X realization for such leptophilic dark matter.

Keywords

Phenomenological Models 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    J. Chang, Dark Matter Particle Explorer: The First Chinese Cosmic Ray and Hard γ-ray Detector in Space, Chin. J. Space. Sci. 34 (2014) 550.Google Scholar
  2. [2]
    DAMPE collaboration, J. Chang et al., The DArk Matter Particle Explorer mission, Astropart. Phys. 95 (2017) 6 [arXiv:1706.08453] [INSPIRE].
  3. [3]
    DAMPE collaboration, G. Ambrosi et al., Direct detection of a break in the teraelectronvolt cosmic-ray spectrum of electrons and positrons, Nature 552 (2017) 63 [arXiv:1711.10981] [INSPIRE].
  4. [4]
    Q. Yuan et al., Interpretations of the DAMPE electron data, arXiv:1711.10989 [INSPIRE].
  5. [5]
    K. Fang, X.-J. Bi and P.-F. Yin, Explanation of the knee-like feature in the DAMPE cosmic e + e + energy spectrum, arXiv:1711.10996 [INSPIRE].
  6. [6]
    Y.-Z. Fan, W.-C. Huang, M. Spinrath, Y.-L.S. Tsai and Q. Yuan, A model explaining neutrino masses and the DAMPE cosmic ray electron excess, arXiv:1711.10995 [INSPIRE].
  7. [7]
    P.-H. Gu and X.-G. He, Electrophilic dark matter with dark photon: from DAMPE to direct detection, Phys. Lett. B 778 (2018) 292 [arXiv:1711.11000] [INSPIRE].CrossRefGoogle Scholar
  8. [8]
    S. Chang, R. Edezhath, J. Hutchinson and M. Luty, Leptophilic Effective WIMPs, Phys. Rev. D 90 (2014) 015011 [arXiv:1402.7358] [INSPIRE].ADSGoogle Scholar
  9. [9]
    D. Schmidt, T. Schwetz and T. Toma, Direct Detection of Leptophilic Dark Matter in a Model with Radiative Neutrino Masses, Phys. Rev. D 85 (2012) 073009 [arXiv:1201.0906] [INSPIRE].ADSGoogle Scholar
  10. [10]
    P. Agrawal, S. Blanchet, Z. Chacko and C. Kilic, Flavored Dark Matter and Its Implications for Direct Detection and Colliders, Phys. Rev. D 86 (2012) 055002 [arXiv:1109.3516] [INSPIRE].ADSGoogle Scholar
  11. [11]
    C.D. Carone and R. Primulando, A Froggatt-Nielsen Model for Leptophilic Scalar Dark Matter Decay, Phys. Rev. D 84 (2011) 035002 [arXiv:1105.4635] [INSPIRE].ADSGoogle Scholar
  12. [12]
    P. Ko and Y. Omura, Supersymmetric U(1)B × U(1)L model with leptophilic and leptophobic cold dark matters, Phys. Lett. B 701 (2011) 363 [arXiv:1012.4679] [INSPIRE].
  13. [13]
    N. Haba, Y. Kajiyama, S. Matsumoto, H. Okada and K. Yoshioka, Universally Leptophilic Dark Matter From Non-Abelian Discrete Symmetry, Phys. Lett. B 695 (2011) 476 [arXiv:1008.4777] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    Y. Farzan, S. Pascoli and M.A. Schmidt, AMEND: A model explaining neutrino masses and dark matter testable at the LHC and MEG, JHEP 10 (2010) 111 [arXiv:1005.5323] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  15. [15]
    E.J. Chun, J.-C. Park and S. Scopel, Dirac gaugino as leptophilic dark matter, JCAP 02 (2010) 015 [arXiv:0911.5273] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    T. Cohen and K.M. Zurek, Leptophilic Dark Matter from the Lepton Asymmetry, Phys. Rev. Lett. 104 (2010) 101301 [arXiv:0909.2035] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    H. Davoudiasl, Dark Matter with Time-Varying Leptophilic Couplings, Phys. Rev. D 80 (2009) 043502 [arXiv:0904.3103] [INSPIRE].ADSGoogle Scholar
  18. [18]
    A. Ibarra, A. Ringwald, D. Tran and C. Weniger, Cosmic Rays from Leptophilic Dark Matter Decay via Kinetic Mixing, JCAP 08 (2009) 017 [arXiv:0903.3625] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    B. Kyae, PAMELA/ATIC anomaly from the meta-stable extra dark matter component and the leptophilic Yukawa interaction, JCAP 07 (2009) 028 [arXiv:0902.0071] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    C.-R. Chen and F. Takahashi, Cosmic rays from Leptonic Dark Matter, JCAP 02 (2009) 004 [arXiv:0810.4110] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    E.A. Baltz and L. Bergstrom, Detection of leptonic dark matter, Phys. Rev. D 67 (2003) 043516 [hep-ph/0211325] [INSPIRE].
  22. [22]
    Y. Bai and J. Berger, Lepton Portal Dark Matter, JHEP 08 (2014) 153 [arXiv:1402.6696] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    P. Schwaller, T.M.P. Tait and R. Vega-Morales, Dark Matter and Vectorlike Leptons from Gauged Lepton Number, Phys. Rev. D 88 (2013) 035001 [arXiv:1305.1108] [INSPIRE].ADSGoogle Scholar
  24. [24]
    L. Basso, O. Fischer and J.J. van der Bij, Natural Z’ model with an inverse seesaw mechanism and leptonic dark matter, Phys. Rev. D 87 (2013) 035015 [arXiv:1207.3250] [INSPIRE].ADSGoogle Scholar
  25. [25]
    C.D. Carone, A. Cukierman and R. Primulando, On the Cosmic-Ray Spectra of Three-Body Lepton-Flavor-Violating Dark Matter Decays, Phys. Lett. B 704 (2011) 541 [arXiv:1108.2084] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    W. Chao, Pure Leptonic Gauge Symmetry, Neutrino Masses and Dark Matter, Phys. Lett. B 695 (2011) 157 [arXiv:1005.1024] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    S. Khalil, H.-S. Lee and E. Ma, Generalized Lepton Number and Dark Left-Right Gauge Model, Phys. Rev. D 79 (2009) 041701 [arXiv:0901.0981] [INSPIRE].ADSGoogle Scholar
  28. [28]
    Q.-H. Cao, E. Ma and G. Shaughnessy, Dark Matter: The Leptonic Connection, Phys. Lett. B 673 (2009) 152 [arXiv:0901.1334] [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    A. Freitas and S. Westhoff, Leptophilic Dark Matter in Lepton Interactions at LEP and ILC, JHEP 10 (2014) 116 [arXiv:1408.1959] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    N.F. Bell, Y. Cai, R.K. Leane and A.D. Medina, Leptophilic dark matter with Z interactions, Phys. Rev. D 90 (2014) 035027 [arXiv:1407.3001] [INSPIRE].ADSGoogle Scholar
  31. [31]
    M.-C. Chen, J. Huang and V. Takhistov, Beyond Minimal Lepton Flavored Dark Matter, JHEP 02 (2016) 060 [arXiv:1510.04694] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    J. Kile, A. Kobach and A. Soni, Lepton-Flavored Dark Matter, Phys. Lett. B 744 (2015) 330 [arXiv:1411.1407] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    J. Kopp, L. Michaels and J. Smirnov, Loopy Constraints on Leptophilic Dark Matter and Internal Bremsstrahlung, JCAP 04 (2014) 022 [arXiv:1401.6457] [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    K. Belotsky, M. Khlopov, C. Kouvaris and M. Laletin, Decaying Dark Atom constituents and cosmic positron excess, Adv. High Energy Phys. 2014 (2014) 214258 [arXiv:1403.1212] [INSPIRE].Google Scholar
  35. [35]
    P.S.B. Dev, D.K. Ghosh, N. Okada and I. Saha, Neutrino Mass and Dark Matter in light of recent AMS-02 results, Phys. Rev. D 89 (2014) 095001 [arXiv:1307.6204] [INSPIRE].ADSGoogle Scholar
  36. [36]
    A. Alves, A. Berlin, S. Profumo and F.S. Queiroz, Dark Matter Complementarity and the Z Portal, Phys. Rev. D 92 (2015) 083004 [arXiv:1501.03490] [INSPIRE].ADSGoogle Scholar
  37. [37]
    S.M. Boucenna et al., Decaying Leptophilic Dark Matter at IceCube, JCAP 12 (2015) 055 [arXiv:1507.01000] [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    A. Berlin, D. Hooper and S.D. McDermott, Simplified Dark Matter Models for the Galactic Center Gamma-Ray Excess, Phys. Rev. D 89 (2014) 115022 [arXiv:1404.0022] [INSPIRE].ADSGoogle Scholar
  39. [39]
    S. Dutta, D. Sachdeva and B. Rawat, Signals of Leptophilic Dark Matter at the ILC, Eur. Phys. J. C 77 (2017) 639 [arXiv:1704.03994] [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    M. Das and S. Mohanty, Leptophilic dark matter in gauged L μL τ extension of MSSM, Phys. Rev. D 89 (2014) 025004 [arXiv:1306.4505] [INSPIRE].
  41. [41]
    P.J. Fox and E. Poppitz, Leptophilic Dark Matter, Phys. Rev. D 79 (2009) 083528 [arXiv:0811.0399] [INSPIRE].ADSGoogle Scholar
  42. [42]
    X.-J. Bi, X.-G. He and Q. Yuan, Parameters in a class of leptophilic models from PAMELA, ATIC and FERMI, Phys. Lett. B 678 (2009) 168 [arXiv:0903.0122] [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    A. Hamze, C. Kilic, J. Koeller, C. Trendafilova and J.-H. Yu, Lepton-Flavored Asymmetric Dark Matter and Interference in Direct Detection, Phys. Rev. D 91 (2015) 035009 [arXiv:1410.3030] [INSPIRE].ADSGoogle Scholar
  44. [44]
    C.-J. Lee and J. Tandean, Lepton-Flavored Scalar Dark Matter with Minimal Flavor Violation, JHEP 04 (2015) 174 [arXiv:1410.6803] [INSPIRE].ADSCrossRefGoogle Scholar
  45. [45]
    S. Baek and P. Ko, Phenomenology of \( \mathrm{U}{(1)_{L_{\mu}}}_{-{L}_{\tau }} \) charged dark matter at PAMELA and colliders, JCAP 10 (2009) 011 [arXiv:0811.1646] [INSPIRE].ADSCrossRefGoogle Scholar
  46. [46]
    F. del Aguila, M. Chala, J. Santiago and Y. Yamamoto, Collider limits on leptophilic interactions, JHEP 03 (2015) 059 [arXiv:1411.7394] [INSPIRE].CrossRefGoogle Scholar
  47. [47]
    B. Fornal, Y. Shirman, T.M.P. Tait and J.R. West, Asymmetric dark matter and baryogenesis from SU(2), Phys. Rev. D 96 (2017) 035001 [arXiv:1703.00199] [INSPIRE].ADSGoogle Scholar
  48. [48]
    B. Fornal, Dark Matter and Baryogenesis from Non-Abelian Gauged Lepton Number, Mod. Phys. Lett. A 32 (2017) 1730018 [arXiv:1705.07297] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  49. [49]
    J. Kile, Flavored Dark Matter: A Review, Mod. Phys. Lett. A 28 (2013) 1330031 [arXiv:1308.0584] [INSPIRE].ADSCrossRefGoogle Scholar
  50. [50]
    J. Kopp, V. Niro, T. Schwetz and J. Zupan, DAMA/LIBRA and leptonically interacting Dark Matter, Phys. Rev. D 80 (2009) 083502 [arXiv:0907.3159] [INSPIRE].ADSGoogle Scholar
  51. [51]
    A.W. Strong and I.V. Moskalenko, Propagation of cosmic-ray nucleons in the galaxy, Astrophys. J. 509 (1998) 212 [astro-ph/9807150] [INSPIRE].
  52. [52]
    C. Evoli, D. Gaggero, D. Grasso and L. Maccione, Cosmic-Ray Nuclei, Antiprotons and Gamma-rays in the Galaxy: a New Diffusion Model, JCAP 10 (2008) 018 [arXiv:0807.4730] [INSPIRE].ADSCrossRefGoogle Scholar
  53. [53]
    A.M. Atoian, F.A. Aharonian and H.J. Volk, Electrons and positrons in the galactic cosmic rays, Phys. Rev. D 52 (1995) 3265 [INSPIRE].ADSGoogle Scholar
  54. [54]
    X. Huang, Y.-L.S. Tsai and Q. Yuan, LikeDM: likelihood calculator of dark matter detection, Comput. Phys. Commun. 213 (2017) 252 [arXiv:1603.07119] [INSPIRE].ADSCrossRefGoogle Scholar
  55. [55]
    L. Zu, C. Zhang, L. Feng, Q. Yuan and Y.-Z. Fan, Constraints on box-shaped cosmic ray electron feature from dark matter annihilation with the AMS-02 and DAMPE data, arXiv:1711.11052 [INSPIRE].
  56. [56]
    A. Alloul, N.D. Christensen, C. Degrande, C. Duhr and B. Fuks, FeynRules 2.0 — A complete toolbox for tree-level phenomenology, Comput. Phys. Commun. 185 (2014) 2250 [arXiv:1310.1921] [INSPIRE].
  57. [57]
    G. Bélanger et al., Indirect search for dark matter with MicrOMEGAs2.4, Comput. Phys. Commun. 182 (2011) 842 [arXiv:1004.1092] [INSPIRE].
  58. [58]
    DELPHI, OPAL, LEP Electroweak, ALEPH and L3 collaborations, S. Schael et al., Electroweak Measurements in Electron-Positron Collisions at W-Boson-Pair Energies at LEP, Phys. Rept. 532 (2013) 119 [arXiv:1302.3415] [INSPIRE].
  59. [59]
    OPAL collaboration, G. Abbiendi et al., Tests of the standard model and constraints on new physics from measurements of fermion pair production at 189-GeV at LEP, Eur. Phys. J. C 13 (2000) 553 [hep-ex/9908008] [INSPIRE].
  60. [60]
    A. Freitas, J. Lykken, S. Kell and S. Westhoff, Testing the Muon g-2 Anomaly at the LHC, JHEP 05 (2014) 145 [Erratum ibid. 09 (2014) 155] [arXiv:1402.7065] [INSPIRE].
  61. [61]
    PandaX-II collaboration, X. Cui et al., Dark Matter Results From 54-Ton-Day Exposure of PandaX-II Experiment, Phys. Rev. Lett. 119 (2017) 181302 [arXiv:1708.06917] [INSPIRE].
  62. [62]
    XENON collaboration, E. Aprile et al., First Dark Matter Search Results from the XENON1T Experiment, Phys. Rev. Lett. 119 (2017) 181301 [arXiv:1705.06655] [INSPIRE].
  63. [63]
    LUX collaboration, D.S. Akerib et al., Results from a search for dark matter in the complete LUX exposure, Phys. Rev. Lett. 118 (2017) 021303 [arXiv:1608.07648] [INSPIRE].
  64. [64]
    F. D’Eramo, B.J. Kavanagh and P. Panci, Probing Leptophilic Dark Sectors with Hadronic Processes, Phys. Lett. B 771 (2017) 339 [arXiv:1702.00016] [INSPIRE].ADSCrossRefGoogle Scholar
  65. [65]
    A.D. Martin, W.J. Stirling, R.S. Thorne and G. Watt, Update of parton distributions at NNLO, Phys. Lett. B 652 (2007) 292 [arXiv:0706.0459] [INSPIRE].ADSCrossRefGoogle Scholar
  66. [66]
    F. D’Eramo, B.J. Kavanagh and P. Panci, You can hide but you have to run: direct detection with vector mediators, JHEP 08 (2016) 111 [arXiv:1605.04917] [INSPIRE].ADSCrossRefGoogle Scholar
  67. [67]
    ATLAS collaboration, Search for new high-mass phenomena in the dilepton final state using 36 fb −1 of proton-proton collision data at \( \sqrt{s}=13 \) TeV with the ATLAS detector, JHEP 10 (2017)182 [arXiv:1707.02424] [INSPIRE].
  68. [68]
    P. Agrawal, Z. Chacko and C.B. Verhaaren, Leptophilic Dark Matter and the Anomalous Magnetic Moment of the Muon, JHEP 08 (2014) 147 [arXiv:1402.7369] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2018

Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.Department of Physics and Institute of Theoretical PhysicsNanjing Normal UniversityNanjingChina
  2. 2.CAS Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of SciencesBeijingChina
  3. 3.School of Physical SciencesUniversity of Chinese Academy of SciencesBeijingChina
  4. 4.Key Laboratory of Dark Matter and Space Astronomy, Purple Mountain Observatory, Chinese Academy of SciencesNanjingChina
  5. 5.School of PhysicsZhengzhou UniversityZhengzhouChina
  6. 6.Department of PhysicsTohoku UniversitySendaiJapan
  7. 7.Department of PhysicsUniversity of CaliforniaDavisU.S.A.

Personalised recommendations