Adiabatic out-of-equilibrium solutions to the Boltzmann equation in warm inflation


We show that, in warm inflation, the nearly constant Hubble rate and temperature lead to an adiabatic evolution of the number density of particles interacting with the thermal bath, even if thermal equilibrium cannot be maintained. In this case, the number density is suppressed compared to the equilibrium value but the associated phase-space distribution retains approximately an equilibrium form, with a smaller amplitude and a slightly smaller effective temperature. As an application, we explicitly construct a baryogenesis mechanism during warm inflation based on the out-of-equilibrium decay of particles in such an adiabatically evolving state. We show that this generically leads to small baryon isocurvature perturbations, within the bounds set by the Planck satellite. These are correlated with the main adiabatic curvature perturbations but exhibit a distinct spectral index, which may constitute a smoking gun for baryogenesis during warm inflation. Finally, we discuss the prospects for other applications of adiabatically evolving out-of-equilibrium states.

A preprint version of the article is available at ArXiv.


  1. [1]

    A.A. Starobinsky, A New Type of Isotropic Cosmological Models Without Singularity, Phys. Lett. B 91 (1980) 99 [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  2. [2]

    K. Sato, First Order Phase Transition of a Vacuum and Expansion of the Universe, Mon. Not. Roy. Astron. Soc. 195 (1981) 467 [INSPIRE].

    ADS  Article  Google Scholar 

  3. [3]

    A.H. Guth, The Inflationary Universe: A Possible Solution to the Horizon and Flatness Problems, Phys. Rev. D 23 (1981) 347 [INSPIRE].

    ADS  MATH  Google Scholar 

  4. [4]

    A. Albrecht and P.J. Steinhardt, Cosmology for Grand Unified Theories with Radiatively Induced Symmetry Breaking, Phys. Rev. Lett. 48 (1982) 1220 [INSPIRE].

    ADS  Article  Google Scholar 

  5. [5]

    A.D. Linde, A New Inflationary Universe Scenario: A Possible Solution of the Horizon, Flatness, Homogeneity, Isotropy and Primordial Monopole Problems, Phys. Lett. B 108 (1982) 389 [INSPIRE].

    ADS  Article  Google Scholar 

  6. [6]

    A. Berera and L.-Z. Fang, Thermally induced density perturbations in the inflation era, Phys. Rev. Lett. 74 (1995) 1912 [astro-ph/9501024] [INSPIRE].

  7. [7]

    A. Berera, Warm inflation, Phys. Rev. Lett. 75 (1995) 3218 [astro-ph/9509049] [INSPIRE].

  8. [8]

    A. Berera, I.G. Moss and R.O. Ramos, Warm Inflation and its Microphysical Basis, Rept. Prog. Phys. 72 (2009) 026901 [arXiv:0808.1855] [INSPIRE].

    ADS  Article  Google Scholar 

  9. [9]

    M. Bastero-Gil and A. Berera, Warm inflation model building, Int. J. Mod. Phys. A 24 (2009) 2207 [arXiv:0902.0521] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  10. [10]

    A. Berera, Interpolating the stage of exponential expansion in the early universe: A possible alternative with no reheating, Phys. Rev. D 55 (1997) 3346 [hep-ph/9612239] [INSPIRE].

  11. [11]

    A. Berera, Warm inflation at arbitrary adiabaticity: A Model, an existence proof for inflationary dynamics in quantum field theory, Nucl. Phys. B 585 (2000) 666 [hep-ph/9904409] [INSPIRE].

  12. [12]

    L.M.H. Hall, I.G. Moss and A. Berera, Scalar perturbation spectra from warm inflation, Phys. Rev. D 69 (2004) 083525 [astro-ph/0305015] [INSPIRE].

  13. [13]

    I.G. Moss and C. Xiong, Non-Gaussianity in fluctuations from warm inflation, JCAP 04 (2007) 007 [astro-ph/0701302] [INSPIRE].

  14. [14]

    C. Graham and I.G. Moss, Density fluctuations from warm inflation, JCAP 07 (2009) 013 [arXiv:0905.3500] [INSPIRE].

    ADS  Article  Google Scholar 

  15. [15]

    R.O. Ramos and L.A. da Silva, Power spectrum for inflation models with quantum and thermal noises, JCAP 03 (2013) 032 [arXiv:1302.3544] [INSPIRE].

    ADS  Article  Google Scholar 

  16. [16]

    S. Bartrum, A. Berera and J.G. Rosa, Warming up for Planck, JCAP 06 (2013) 025 [arXiv:1303.3508] [INSPIRE].

    ADS  Article  Google Scholar 

  17. [17]

    S. Bartrum, M. Bastero-Gil, A. Berera, R. Cerezo, R.O. Ramos and J.G. Rosa, The importance of being warm (during inflation), Phys. Lett. B 732 (2014) 116 [arXiv:1307.5868] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  18. [18]

    M. Bastero-Gil, A. Berera, I.G. Moss and R.O. Ramos, Theory of non-Gaussianity in warm inflation, JCAP 12 (2014) 008 [arXiv:1408.4391] [INSPIRE].

    ADS  Article  Google Scholar 

  19. [19]

    M. Bastero-Gil, A. Berera, R.O. Ramos and J.G. Rosa, Warm Little Inflaton, Phys. Rev. Lett. 117 (2016) 151301 [arXiv:1604.08838] [INSPIRE].

    ADS  Article  Google Scholar 

  20. [20]

    A. Berera, M. Gleiser and R.O. Ramos, A First principles warm inflation model that solves the cosmological horizon/flatness problems, Phys. Rev. Lett. 83 (1999) 264 [hep-ph/9809583] [INSPIRE].

  21. [21]

    A. Berera and R.O. Ramos, Construction of a robust warm inflation mechanism, Phys. Lett. B 567 (2003) 294 [hep-ph/0210301] [INSPIRE].

  22. [22]

    I.G. Moss and C. Xiong, Dissipation coefficients for supersymmetric inflatonary models, hep-ph/0603266 [INSPIRE].

  23. [23]

    M. Bastero-Gil, A. Berera and R.O. Ramos, Dissipation coefficients from scalar and fermion quantum field interactions, JCAP 09 (2011) 033 [arXiv:1008.1929] [INSPIRE].

    ADS  Article  Google Scholar 

  24. [24]

    M. Bastero-Gil, A. Berera and J.G. Rosa, Warming up brane-antibrane inflation, Phys. Rev. D 84 (2011) 103503 [arXiv:1103.5623] [INSPIRE].

    ADS  Google Scholar 

  25. [25]

    M. Bastero-Gil, A. Berera, R.O. Ramos and J.G. Rosa, General dissipation coefficient in low-temperature warm inflation, JCAP 01 (2013) 016 [arXiv:1207.0445] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  26. [26]

    R. Cerezo and J.G. Rosa, Warm Inflection, JHEP 01 (2013) 024 [arXiv:1210.7975] [INSPIRE].

    ADS  Article  Google Scholar 

  27. [27]

    E.W. Kolb and M.S. Turner, The Early Universe, Front. Phys. 69 (1990) 1 [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  28. [28]

    D. Lyth and A. Liddle, The Primordial Density Perturbation: Cosmology, Inflation and the Origin of Structure, Cambridge University Press, Cambridge (2009).

    Google Scholar 

  29. [29]

    D. Bazow, G.S. Denicol, U. Heinz, M. Martinez and J. Noronha, Analytic solution of the Boltzmann equation in an expanding system, Phys. Rev. Lett. 116 (2016) 022301 [arXiv:1507.07834] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  30. [30]

    D. Bazow, G.S. Denicol, U. Heinz, M. Martinez and J. Noronha, Nonlinear dynamics from the relativistic Boltzmann equation in the Friedmann-Lemaître-Robertson-Walker spacetime, Phys. Rev. D 94 (2016) 125006 [arXiv:1607.05245] [INSPIRE].

    ADS  MATH  Google Scholar 

  31. [31]

    J.M. Cline, Baryogenesis, hep-ph/0609145 [INSPIRE].

  32. [32]

    A.D. Sakharov, Violation of CP Invariance, c Asymmetry and Baryon Asymmetry of the Universe, Pisma Zh. Eksp. Teor. Fiz. 5 (1967) 32 [INSPIRE].

    Google Scholar 

  33. [33]

    F.R. Klinkhamer and N.S. Manton, A Saddle Point Solution in the Weinberg-Salam Theory, Phys. Rev. D 30 (1984) 2212 [INSPIRE].

    ADS  Google Scholar 

  34. [34]

    M. Fukugita and T. Yanagida, Baryogenesis Without Grand Unification, Phys. Lett. B 174 (1986) 45 [INSPIRE].

    ADS  Article  Google Scholar 

  35. [35]

    B. Fields and S. Sarkar, Big-Bang nucleosynthesis (2006 Particle Data Group mini-review), astro-ph/0601514 [INSPIRE].

  36. [36]

    D.V. Nanopoulos and S. Weinberg, Mechanisms for Cosmological Baryon Production, Phys. Rev. D 20 (1979) 2484 [INSPIRE].

    ADS  Google Scholar 

  37. [37]

    M. Bastero-Gil, A. Berera, R.O. Ramos and J.G. Rosa, Warm baryogenesis, Phys. Lett. B 712 (2012) 425 [arXiv:1110.3971] [INSPIRE].

    ADS  Article  Google Scholar 

  38. [38]

    M.S. Turner, A.G. Cohen and D.B. Kaplan, Isocurvature Baryon Number Fluctuations in an Inflationary Universe, Phys. Lett. B 216 (1989) 20 [INSPIRE].

    ADS  Article  Google Scholar 

  39. [39]

    J. Yokoyama and Y. Suto, Baryon isocurvature scenario in inflationary cosmology: A particle physics model and its astrophysical implications, Astrophys. J. 379 (1991) 427 [INSPIRE].

  40. [40]

    S. Mollerach, On the Primordial Origin of Isocurvature Perturbations, Phys. Lett. B 242 (1990) 158 [INSPIRE].

    ADS  Article  Google Scholar 

  41. [41]

    M. Sasaki and J. Yokoyama, Initial condition for the minimal isocurvature scenario, Phys. Rev. D 44 (1991) 970 [INSPIRE].

    ADS  Google Scholar 

  42. [42]

    J. Yokoyama, Formation of baryon number fluctuation in supersymmetric inflationary cosmology, Astropart. Phys. 2 (1994) 291 [INSPIRE].

    ADS  Article  Google Scholar 

  43. [43]

    K. Koyama and J. Soda, Baryon isocurvature perturbation in the Affleck-Dine baryogenesis, Phys. Rev. Lett. 82 (1999) 2632 [astro-ph/9810006] [INSPIRE].

  44. [44]

    D.H. Lyth, C. Ungarelli and D. Wands, The Primordial density perturbation in the curvaton scenario, Phys. Rev. D 67 (2003) 023503 [astro-ph/0208055] [INSPIRE].

  45. [45]

    D. Grin, D. Hanson, G.P. Holder, O. Doré and M. Kamionkowski, Baryons do trace dark matter 380,000 years after the big bang: Search for compensated isocurvature perturbations with WMAP 9-year data, Phys. Rev. D 89 (2014) 023006 [arXiv:1306.4319] [INSPIRE].

    ADS  Google Scholar 

  46. [46]

    Planck collaboration, P.A.R. Ade et al., Planck 2015 results. XX. Constraints on inflation, Astron. Astrophys. 594 (2016) A20 [arXiv:1502.02114] [INSPIRE].

  47. [47]

    Planck collaboration, P.A.R. Ade et al., Planck 2015 results. XIII. Cosmological parameters, Astron. Astrophys. 594 (2016) A13 [arXiv:1502.01589] [INSPIRE].

  48. [48]

    M. Benetti and R.O. Ramos, Warm inflation dissipative effects: predictions and constraints from the Planck data, Phys. Rev. D 95 (2017) 023517 [arXiv:1610.08758] [INSPIRE].

    ADS  Google Scholar 

  49. [49]

    M. Bastero-Gil, S. Bhattacharya, K. Dutta and M.R. Gangopadhyay, Constraining Warm Inflation with CMB data, arXiv:1710.10008 [INSPIRE].

  50. [50]

    R. Arya, A. Dasgupta, G. Goswami, J. Prasad and R. Rangarajan, Revisiting CMB constraints on Warm Inflation, arXiv:1710.11109 [INSPIRE].

  51. [51]

    S. Bartrum, A. Berera and J.G. Rosa, Fluctuation-dissipation dynamics of cosmological scalar fields, Phys. Rev. D 91 (2015) 083540 [arXiv:1412.5489] [INSPIRE].

    ADS  Google Scholar 

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information



Corresponding author

Correspondence to João G. Rosa.

Additional information

ArXiv ePrint: 1711.09023

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bastero-Gil, M., Berera, A., Ramos, R.O. et al. Adiabatic out-of-equilibrium solutions to the Boltzmann equation in warm inflation. J. High Energ. Phys. 2018, 63 (2018).

Download citation


  • Cosmology of Theories beyond the SM
  • Thermal Field Theory