Skip to main content
Springer Nature Link
Account
Menu
Find a journal Publish with us Track your research
Search
Cart
  1. Home
  2. Journal of High Energy Physics
  3. Article

Large NLO corrections in \( t\overline{t}{W}^{\pm } \) and \( t\overline{t}t\overline{t} \) hadroproduction from supposedly subleading EW contributions

  • Regular Article - Theoretical Physics
  • Open access
  • Published: 06 February 2018
  • Volume 2018, article number 31, (2018)
  • Cite this article
Download PDF

You have full access to this open access article

Journal of High Energy Physics Aims and scope Submit manuscript
Large NLO corrections in \( t\overline{t}{W}^{\pm } \) and \( t\overline{t}t\overline{t} \) hadroproduction from supposedly subleading EW contributions
Download PDF
  • Rikkert Frederix1,
  • Davide Pagani1 &
  • Marco Zaro2,3,4 
  • 800 Accesses

  • 106 Citations

  • 2 Altmetric

  • Explore all metrics

A preprint version of the article is available at arXiv.

Abstract

We calculate the complete-NLO predictions for \( t\overline{t}{W}^{\pm } \) and \( t\overline{t}t\overline{t} \) production in proton-proton collisions at 13 and 100 TeV. All the non-vanishing contributions of \( \mathcal{O}\left({\alpha}_s^i{\alpha}^j\right) \) with i + j = 3, 4 for \( t\overline{t}{W}^{\pm } \) and i + j = 4, 5 for \( t\overline{t}t\overline{t} \) are evaluated without any approximation. For \( t\overline{t}{W}^{\pm } \) we find that, due to the presence of tW → tW scattering, at 13(100) TeV the \( \mathcal{O}\left({\alpha}_s{\alpha}^3\right) \) contribution is about 12(70)% of the LO, i.e., it is larger than the so-called NLO EW corrections (the \( \mathcal{O}\left({\alpha}_s^2{\alpha}^2\right) \) terms) and has opposite sign. In the case of \( t\overline{t}t\overline{t} \) production, large contributions from electroweak tt → tt scattering are already present at LO in the \( \mathcal{O}\left({\alpha}_s^3\alpha \right) \) and \( \mathcal{O}\left({\alpha}_s^2{\alpha}^2\right) \) terms. For the same reason we find that both NLO terms of \( \mathcal{O}\left({\alpha}_s^4\alpha \right) \), i.e., the NLO EW corrections, and \( \mathcal{O}\left({\alpha}_s^3{\alpha}^2\right) \) are large (±15% of the LO) and their relative contributions strongly depend on the values of the renormalisation and factorisation scales. However, large accidental cancellations are present (away from the threshold region) between these two contributions. Moreover, the NLO corrections strongly depend on the kinematics and are particularly large at the threshold, where even the relative contribution from \( \mathcal{O}\left({\alpha}_s^2{\alpha}^3\right) \) terms amounts to tens of percents.

Article PDF

Download to read the full article text

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Use our pre-submission checklist

Avoid common mistakes on your manuscript.

References

  1. J.M. Campbell and R.K. Ellis, An update on vector boson pair production at hadron colliders, Phys. Rev. D 60 (1999) 113006 [hep-ph/9905386] [INSPIRE].

  2. G. Cullen et al., Automated one-loop calculations with GoSam, Eur. Phys. J. C 72 (2012) 1889 [arXiv:1111.2034] [INSPIRE].

    Article  ADS  Google Scholar 

  3. G. Cullen et al., GoSam-2.0: a tool for automated one-loop calculations within the Standard Model and beyond, Eur. Phys. J. C 74 (2014) 3001 [arXiv:1404.7096] [INSPIRE].

  4. S. Badger, B. Biedermann, P. Uwer and V. Yundin, Numerical evaluation of virtual corrections to multi-jet production in massless QCD, Comput. Phys. Commun. 184 (2013) 1981 [arXiv:1209.0100] [INSPIRE].

    Article  ADS  Google Scholar 

  5. F. Cascioli, P. Maierhofer and S. Pozzorini, Scattering amplitudes with open loops, Phys. Rev. Lett. 108 (2012) 111601 [arXiv:1111.5206] [INSPIRE].

    Article  ADS  Google Scholar 

  6. S. Actis, A. Denner, L. Hofer, A. Scharf and S. Uccirati, Recursive generation of one-loop amplitudes in the Standard Model, JHEP 04 (2013) 037 [arXiv:1211.6316] [INSPIRE].

    Article  ADS  Google Scholar 

  7. S. Actis, A. Denner, L. Hofer, J.-N. Lang, A. Scharf and S. Uccirati, RECOLA: REcursive Computation of One-Loop Amplitudes, Comput. Phys. Commun. 214 (2017) 140 [arXiv:1605.01090] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  8. T. Gleisberg et al., Event generation with SHERPA 1.1, JHEP 02 (2009) 007 [arXiv:0811.4622] [INSPIRE].

  9. G. Bevilacqua et al., HELAC-NLO, Comput. Phys. Commun. 184 (2013) 986 [arXiv:1110.1499] [INSPIRE].

    Article  ADS  Google Scholar 

  10. V. Hirschi, R. Frederix, S. Frixione, M.V. Garzelli, F. Maltoni and R. Pittau, Automation of one-loop QCD corrections, JHEP 05 (2011) 044 [arXiv:1103.0621] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  11. J. Alwall et al., The automated computation of tree-level and next-to-leading order differential cross sections and their matching to parton shower simulations, JHEP 07 (2014) 079 [arXiv:1405.0301] [INSPIRE].

    Article  ADS  Google Scholar 

  12. S. Alioli, P. Nason, C. Oleari and E. Re, A general framework for implementing NLO calculations in shower Monte Carlo programs: the POWHEG BOX, JHEP 06 (2010) 043 [arXiv:1002.2581] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  13. S. Platzer and S. Gieseke, Dipole showers and automated NLO matching in HERWIG++, Eur. Phys. J. C 72 (2012) 2187 [arXiv:1109.6256] [INSPIRE].

  14. S. Kallweit, J.M. Lindert, P. Maierhöfer, S. Pozzorini and M. Schöherr, NLO electroweak automation and precise predictions for W + multijet production at the LHC, JHEP 04 (2015) 012 [arXiv:1412.5157] [INSPIRE].

    Article  Google Scholar 

  15. S. Kallweit, J.M. Lindert, P. Maierhofer, S. Pozzorini and M. Schönherr, NLO QCD+EW predictions for V + jets including off-shell vector-boson decays and multijet merging, JHEP 04 (2016) 021 [arXiv:1511.08692] [INSPIRE].

    ADS  Google Scholar 

  16. B. Biedermann, S. Bräuer, A. Denner, M. Pellen, S. Schumann and J.M. Thompson, Automation of NLO QCD and EW corrections with Sherpa and Recola, Eur. Phys. J. C 77 (2017) 492 [arXiv:1704.05783] [INSPIRE].

  17. S. Frixione, V. Hirschi, D. Pagani, H.S. Shao and M. Zaro, Weak corrections to Higgs hadroproduction in association with a top-quark pair, JHEP 09 (2014) 065 [arXiv:1407.0823] [INSPIRE].

    Article  ADS  Google Scholar 

  18. S. Frixione, V. Hirschi, D. Pagani, H.S. Shao and M. Zaro, Electroweak and QCD corrections to top-pair hadroproduction in association with heavy bosons, JHEP 06 (2015) 184 [arXiv:1504.03446] [INSPIRE].

    Article  ADS  Google Scholar 

  19. R. Frederix, S. Frixione, V. Hirschi, D. Pagani, H.-S. Shao and M. Zaro, The complete NLO corrections to dijet hadroproduction, JHEP 04 (2017) 076 [arXiv:1612.06548] [INSPIRE].

    Article  ADS  Google Scholar 

  20. M. Chiesa, N. Greiner and F. Tramontano, Automation of electroweak corrections for LHC processes, J. Phys. G 43 (2016) 013002 [arXiv:1507.08579] [INSPIRE].

  21. N. Greiner and M. Schönherr, NLO QCD+EW corrections to diphoton production in association with a vector boson, JHEP 01 (2018) 079 [arXiv:1710.11514] [INSPIRE].

    Article  ADS  Google Scholar 

  22. G. Heinrich, QCD calculations for the LHC: status and prospects, arXiv:1710.04998 [INSPIRE].

  23. C. Anastasiou, C. Duhr, F. Dulat, F. Herzog and B. Mistlberger, Higgs boson gluon-fusion production in QCD at three loops, Phys. Rev. Lett. 114 (2015) 212001 [arXiv:1503.06056] [INSPIRE].

    Article  ADS  Google Scholar 

  24. F.A. Dreyer and A. Karlberg, Vector-boson fusion Higgs production at three loops in QCD, Phys. Rev. Lett. 117 (2016) 072001 [arXiv:1606.00840] [INSPIRE].

  25. M. Czakon, D. Heymes, A. Mitov, D. Pagani, I. Tsinikos and M. Zaro, Top-pair production at the LHC through NNLO QCD and NLO EW, JHEP 10 (2017) 186 [arXiv:1705.04105] [INSPIRE].

    Article  ADS  Google Scholar 

  26. B. Biedermann, A. Denner and M. Pellen, Complete NLO corrections to W + W + scattering and its irreducible background at the LHC, JHEP 10 (2017) 124 [arXiv:1708.00268] [INSPIRE].

  27. B. Biedermann, A. Denner and M. Pellen, Large electroweak corrections to vector-boson scattering at the Large Hadron Collider, Phys. Rev. Lett. 118 (2017) 261801 [arXiv:1611.02951] [INSPIRE].

    Article  ADS  Google Scholar 

  28. CMS collaboration, Measurement of top pair-production in association with a W or Z boson in pp collisions at 13 TeV, CMS-PAS-TOP-17-005, CERN, Geneva Switzerland, (2017).

  29. ATLAS collaboration, Measurement of the \( t\overline{t}Z \) and \( t\overline{t}W \) production cross sections in multilepton final states using 3.2 fb −1 of pp collisions at \( \sqrt{s}=13 \) TeV with the ATLAS detector, Eur. Phys. J. C 77 (2017) 40 [arXiv:1609.01599] [INSPIRE].

  30. CMS collaboration, Search for the Standard Model production of four top quarks with same-sign and multilepton final states in proton-proton collisions at \( \sqrt{s}=13 \) TeV, CMS-PAS-TOP-17-009, CERN, Geneva Switzerland, (2017).

  31. J.R. Andersen et al., Les Houches 2015: physics at TeV colliders Standard Model working group report, in 9th Les Houches Workshop on Physics at TeV Colliders (PhysTeV 2015), Les Houches France, 1-19 June 2015 [arXiv:1605.04692] [INSPIRE].

  32. R. Frederix, S. Frixione, V. Hirschi, D. Pagani, H.-S. Shao and M. Zaro, in preparation.

  33. J.A. Dror, M. Farina, E. Salvioni and J. Serra, Strong tW scattering at the LHC, JHEP 01 (2016) 071 [arXiv:1511.03674] [INSPIRE].

    Article  ADS  Google Scholar 

  34. Q.-H. Cao, S.-L. Chen and Y. Liu, Probing Higgs width and top quark Yukawa coupling from \( t\overline{t}H \) and \( t\overline{t}t\overline{t} \) productions, Phys. Rev. D 95 (2017) 053004 [arXiv:1602.01934] [INSPIRE].

  35. M.V. Garzelli, A. Kardos, C.G. Papadopoulos and Z. Trócsányi, \( t\overline{t}{W}^{\pm } \) and \( t\overline{t}Z \) hadroproduction at NLO accuracy in QCD with parton shower and hadronization effects, JHEP 11 (2012) 056 [arXiv:1208.2665] [INSPIRE].

  36. J.M. Campbell and R.K. Ellis, \( t\overline{t}{W}^{\pm } \) production and decay at NLO, JHEP 07 (2012) 052 [arXiv:1204.5678] [INSPIRE].

  37. F. Maltoni, M.L. Mangano, I. Tsinikos and M. Zaro, Top-quark charge asymmetry and polarization in \( t\overline{t}{W}^{\pm } \) production at the LHC, Phys. Lett. B 736 (2014) 252 [arXiv:1406.3262] [INSPIRE].

  38. F. Maltoni, D. Pagani and I. Tsinikos, Associated production of a top-quark pair with vector bosons at NLO in QCD: impact on \( t\overline{t}H \) searches at the LHC, JHEP 02 (2016) 113 [arXiv:1507.05640] [INSPIRE].

  39. H.T. Li, C.S. Li and S.A. Li, Renormalization group improved predictions for \( t\overline{t}{W}^{\pm } \) production at hadron colliders, Phys. Rev. D 90 (2014) 094009 [arXiv:1409.1460] [INSPIRE].

  40. A. Broggio, A. Ferroglia, G. Ossola and B.D. Pecjak, Associated production of a top pair and a W boson at next-to-next-to-leading logarithmic accuracy, JHEP 09 (2016) 089 [arXiv:1607.05303] [INSPIRE].

  41. A. Kulesza, L. Motyka, D. Schwartländer, T. Stebel and V. Theeuwes, Soft gluon resummation for the associated production of a top quark pair with a W boson at the LHC, arXiv:1710.06810 [INSPIRE].

  42. LHC Higgs Cross section Working Group collaboration, D. de Florian et al., Handbook of LHC Higgs cross sections: 4. Deciphering the nature of the Higgs sector, arXiv:1610.07922 [INSPIRE].

  43. G. Bevilacqua and M. Worek, Constraining BSM physics at the LHC: four top final states with NLO accuracy in perturbative QCD, JHEP 07 (2012) 111 [arXiv:1206.3064] [INSPIRE].

  44. S. Frixione, Z. Kunszt and A. Signer, Three jet cross-sections to next-to-leading order, Nucl. Phys. B 467 (1996) 399 [hep-ph/9512328] [INSPIRE].

  45. S. Frixione, A general approach to jet cross-sections in QCD, Nucl. Phys. B 507 (1997) 295 [hep-ph/9706545] [INSPIRE].

  46. R. Frederix, S. Frixione, F. Maltoni and T. Stelzer, Automation of next-to-leading order computations in QCD: the FKS subtraction, JHEP 10 (2009) 003 [arXiv:0908.4272] [INSPIRE].

  47. R. Frederix, S. Frixione, A.S. Papanastasiou, S. Prestel and P. Torrielli, Off-shell single-top production at NLO matched to parton showers, JHEP 06 (2016) 027 [arXiv:1603.01178] [INSPIRE].

  48. G. Ossola, C.G. Papadopoulos and R. Pittau, Reducing full one-loop amplitudes to scalar integrals at the integrand level, Nucl. Phys. B 763 (2007) 147 [hep-ph/0609007] [INSPIRE].

  49. P. Mastrolia, E. Mirabella and T. Peraro, Integrand reduction of one-loop scattering amplitudes through Laurent series expansion, JHEP 06 (2012) 095 [Erratum ibid. 11 (2012) 128] [arXiv:1203.0291] [INSPIRE].

  50. G. Passarino and M.J.G. Veltman, One loop corrections for e + e − annihilation into μ + μ − in the Weinberg model, Nucl. Phys. B 160 (1979) 151 [INSPIRE].

  51. A.I. Davydychev, A simple formula for reducing Feynman diagrams to scalar integrals, Phys. Lett. B 263 (1991) 107 [INSPIRE].

  52. A. Denner and S. Dittmaier, Reduction schemes for one-loop tensor integrals, Nucl. Phys. B 734 (2006) 62 [hep-ph/0509141] [INSPIRE].

  53. G. Ossola, C.G. Papadopoulos and R. Pittau, CutTools: a program implementing the OPP reduction method to compute one-loop amplitudes, JHEP 03 (2008) 042 [arXiv:0711.3596] [INSPIRE].

  54. T. Peraro, Ninja: automated integrand reduction via Laurent expansion for one-loop amplitudes, Comput. Phys. Commun. 185 (2014) 2771 [arXiv:1403.1229] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  55. V. Hirschi and T. Peraro, Tensor integrand reduction via Laurent expansion, JHEP 06 (2016) 060 [arXiv:1604.01363] [INSPIRE].

    Article  ADS  Google Scholar 

  56. A. Denner, S. Dittmaier and L. Hofer, COLLIER: a fortran-based Complex One-Loop LIbrary in Extended Regularizations, Comput. Phys. Commun. 212 (2017) 220 [arXiv:1604.06792] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  57. A. Manohar, P. Nason, G.P. Salam and G. Zanderighi, How bright is the proton? A precise determination of the photon parton distribution function, Phys. Rev. Lett. 117 (2016) 242002 [arXiv:1607.04266] [INSPIRE].

    Article  ADS  Google Scholar 

  58. A.V. Manohar, P. Nason, G.P. Salam and G. Zanderighi, The photon content of the proton, JHEP 12 (2017) 046 [arXiv:1708.01256] [INSPIRE].

    Article  ADS  Google Scholar 

  59. J. Butterworth et al., PDF4LHC recommendations for LHC run II, J. Phys. G 43 (2016) 023001 [arXiv:1510.03865] [INSPIRE].

    Article  ADS  Google Scholar 

  60. NNPDF collaboration, R.D. Ball et al., Parton distributions for the LHC run II, JHEP 04 (2015) 040 [arXiv:1410.8849] [INSPIRE].

  61. L.A. Harland-Lang, A.D. Martin, P. Motylinski and R.S. Thorne, Parton distributions in the LHC era: MMHT 2014 PDFs, Eur. Phys. J. C 75 (2015) 204 [arXiv:1412.3989] [INSPIRE].

  62. S. Dulat et al., New parton distribution functions from a global analysis of quantum chromodynamics, Phys. Rev. D 93 (2016) 033006 [arXiv:1506.07443] [INSPIRE].

  63. M.L. Mangano et al., Physics at a 100 TeV pp collider: Standard Model processes, CERN Yellow Report (2017) 1 [arXiv:1607.01831] [INSPIRE].

  64. C. Zhang, Constraining qqtt operators from four-top production: a case for enhanced EFT sensitivity, arXiv:1708.05928 [INSPIRE].

  65. J.H. Kühn, A. Scharf and P. Uwer, Weak interactions in top-quark pair production at hadron colliders: an update, Phys. Rev. D 91 (2015) 014020 [arXiv:1305.5773] [INSPIRE].

    ADS  Google Scholar 

  66. M. Beneke, A. Maier, J. Piclum and T. Rauh, Higgs effects in top anti-top production near threshold in e + e − annihilation, Nucl. Phys. B 899 (2015) 180 [arXiv:1506.06865] [INSPIRE].

  67. G. Degrassi, P.P. Giardino, F. Maltoni and D. Pagani, Probing the Higgs self coupling via single Higgs production at the LHC, JHEP 12 (2016) 080 [arXiv:1607.04251] [INSPIRE].

    Article  ADS  Google Scholar 

  68. W. Bizon, M. Gorbahn, U. Haisch and G. Zanderighi, Constraints on the trilinear Higgs coupling from vector boson fusion and associated Higgs production at the LHC, JHEP 07 (2017) 083 [arXiv:1610.05771] [INSPIRE].

    Article  ADS  Google Scholar 

  69. F. Maltoni, D. Pagani, A. Shivaji and X. Zhao, Trilinear Higgs coupling determination via single-Higgs differential measurements at the LHC, Eur. Phys. J. C 77 (2017) 887 [arXiv:1709.08649] [INSPIRE].

    Article  ADS  Google Scholar 

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Authors and Affiliations

  1. Technische Universität München, James-Franck-Str. 1, D-85748, Garching, Germany

    Rikkert Frederix & Davide Pagani

  2. Nikhef, Science Park 105, NL-1098 XG, Amsterdam, The Netherlands

    Marco Zaro

  3. Sorbonne Universités, UPMC Univ. Paris 06, UMR 7589, LPTHE, F-75005, Paris, France

    Marco Zaro

  4. CNRS, UMR 7589, LPTHE, F-75005, Paris, France

    Marco Zaro

Authors
  1. Rikkert Frederix
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Davide Pagani
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Marco Zaro
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Davide Pagani.

Additional information

ArXiv ePrint: 1711.02116

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Frederix, R., Pagani, D. & Zaro, M. Large NLO corrections in \( t\overline{t}{W}^{\pm } \) and \( t\overline{t}t\overline{t} \) hadroproduction from supposedly subleading EW contributions. J. High Energ. Phys. 2018, 31 (2018). https://doi.org/10.1007/JHEP02(2018)031

Download citation

  • Received: 17 November 2017

  • Revised: 09 January 2018

  • Accepted: 24 January 2018

  • Published: 06 February 2018

  • DOI: https://doi.org/10.1007/JHEP02(2018)031

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • NLO Computations
  • QCD Phenomenology
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us
  • Track your research

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Journal finder
  • Publish your research
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our imprints

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support
  • Cancel contracts here

Not affiliated

Springer Nature

© 2024 Springer Nature