E. Babichev, V. Mukhanov and A. Vikman, k-Essence, superluminal propagation, causality and emergent geometry, JHEP
02 (2008) 101 [arXiv:0708.0561] [INSPIRE].
R. Geroch, Faster Than Light?, AMS/IP Stud. Adv. Math.
49 (2011) 59 [arXiv:1005.1614] [INSPIRE].
MathSciNet
MATH
Google Scholar
C. Burrage, C. de Rham, L. Heisenberg and A.J. Tolley, Chronology Protection in Galileon Models and Massive Gravity, JCAP
07 (2012) 004 [arXiv:1111.5549] [INSPIRE].
ADS
Article
Google Scholar
G. Papallo and H.S. Reall, Graviton time delay and a speed limit for small black holes in Einstein-Gauss-Bonnet theory, JHEP
11 (2015) 109 [arXiv:1508.05303] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
J. Friedman et al., Cauchy problem in space-times with closed timelike curves, Phys. Rev.
D 42 (1990) 1915 [INSPIRE].
ADS
Google Scholar
I.T. Drummond and S.J. Hathrell, QED Vacuum Polarization in a Background Gravitational Field and Its Effect on the Velocity of Photons, Phys. Rev.
D 22 (1980) 343 [INSPIRE].
ADS
MathSciNet
Google Scholar
S. Dubovsky, A. Nicolis, E. Trincherini and G. Villadoro, Microcausality in curved space-time, Phys. Rev.
D 77 (2008) 084016 [arXiv:0709.1483] [INSPIRE].
ADS
MathSciNet
Google Scholar
G.M. Shore, ‘Faster than light’ photons in gravitational fields: Causality, anomalies and horizons, Nucl. Phys.
B 460 (1996) 379 [gr-qc/9504041] [INSPIRE].
G.M. Shore, Quantum gravitational optics, Contemp. Phys.
44 (2003) 503 [gr-qc/0304059] [INSPIRE].
G.M. Shore, Superluminality and UV completion, Nucl. Phys.
B 778 (2007) 219 [hep-th/0701185] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
I.B. Khriplovich, Superluminal velocity of photons in a gravitational background, Phys. Lett.
B 346 (1995) 251 [gr-qc/9411052] [INSPIRE].
S. Mohanty and A.R. Prasanna, Photon propagation in Einstein and higher derivative gravity, Nucl. Phys.
B 526 (1998) 501 [gr-qc/9804017] [INSPIRE].
G. Preti, A note on the geometrical-optics solution to the Maxwell tensor wave equation in curved spacetime, Nucl. Phys.
B 834 (2010) 390 [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
R. Akhoury and A.D. Dolgov, On the Possibility of Super-luminal Propagation in a Gravitational Background, arXiv:1003.6110 [INSPIRE].
R.D. Daniels and G.M. Shore, ‘Faster than light’ photons and charged black holes, Nucl. Phys.
B 425 (1994) 634 [hep-th/9310114] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
R.D. Daniels and G.M. Shore, ‘Faster than light’ photons and rotating black holes, Phys. Lett.
B 367 (1996) 75 [gr-qc/9508048] [INSPIRE].
T.J. Hollowood and G.M. Shore, Causality and Micro-Causality in Curved Spacetime, Phys. Lett.
B 655 (2007) 67 [arXiv:0707.2302] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
T.J. Hollowood and G.M. Shore, The refractive index of curved spacetime: The fate of causality in QED, Nucl. Phys.
B 795 (2008) 138 [arXiv:0707.2303] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
T.J. Hollowood and G.M. Shore, The Causal Structure of QED in Curved Spacetime: Analyticity and the Refractive Index, JHEP
12 (2008) 091 [arXiv:0806.1019] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
T.J. Hollowood, G.M. Shore and R.J. Stanley, The Refractive Index of Curved Spacetime II: QED, Penrose Limits and Black Holes, JHEP
08 (2009) 089 [arXiv:0905.0771] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
T.J. Hollowood and G.M. Shore, The Effect of Gravitational Tidal Forces on Vacuum Polarization: How to Undress a Photon, Phys. Lett.
B 691 (2010) 279 [arXiv:1006.0145] [INSPIRE].
ADS
Article
Google Scholar
T.J. Hollowood and G.M. Shore, ‘Superluminal’ Photon Propagation in QED in Curved Spacetime is Dispersive and Causal, arXiv:1006.1238 [INSPIRE].
T.J. Hollowood and G.M. Shore, The Effect of Gravitational Tidal Forces on Renormalized Quantum Fields, JHEP
02 (2012) 120 [arXiv:1111.3174] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
T.J. Hollowood and G.M. Shore, The Unbearable Beingness of Light, Dressing and Undressing Photons in Black Hole Spacetimes, Int. J. Mod. Phys.
D 21 (2012) 1241003 [arXiv:1205.3291] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
T.J. Hollowood and G.M. Shore, Causality Violation, Gravitational Shockwaves and UV Completion, JHEP
03 (2016) 129 [arXiv:1512.04952] [INSPIRE].
ADS
Article
Google Scholar
T.J. Hollowood and G.M. Shore, Causality, Renormalizability and Ultra-High Energy Gravitational Scattering, J. Phys.
A 49 (2016) 215401 [arXiv:1601.06989] [INSPIRE].
ADS
MathSciNet
MATH
Google Scholar
J.Z. Simon, Higher Derivative Lagrangians, Nonlocality, Problems and Solutions, Phys. Rev.
D 41 (1990) 3720 [INSPIRE].
ADS
MathSciNet
Google Scholar
X. Jaen, J. Llosa and A. Molina, A reduction of order two for infinite order lagrangians, Phys. Rev.
D 34 (1986) 2302 [INSPIRE].
ADS
Google Scholar
C.P. Burgess and M. Williams, Who You Gonna Call? Runaway Ghosts, Higher Derivatives and Time-Dependence in EFTs, JHEP
08 (2014) 074 [arXiv:1404.2236] [INSPIRE].
ADS
Article
Google Scholar
L. Brillouin, Wave Propagation and Group Velocity, Series in Pure & Applied Physics), Elsevier (1960).
P. Milonni, Fast Light, Slow Light and Left-Handed Light, Series in Optics and Optoelectronics, CRC Press (2004).
C. de Rham, Massive Gravity, Living Rev. Rel.
17 (2014) 7 [arXiv:1401.4173] [INSPIRE].
Article
MATH
Google Scholar
A. Nicolis, R. Rattazzi and E. Trincherini, The Galileon as a local modification of gravity, Phys. Rev.
D 79 (2009) 064036 [arXiv:0811.2197] [INSPIRE].
ADS
MathSciNet
Google Scholar
G.R. Dvali, G. Gabadadze and M. Porrati, 4 – D gravity on a brane in 5 – D Minkowski space, Phys. Lett.
B 485 (2000) 208 [hep-th/0005016] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
M.A. Luty, M. Porrati and R. Rattazzi, Strong interactions and stability in the DGP model, JHEP
09 (2003) 029 [hep-th/0303116] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
C. de Rham, G. Gabadadze and A.J. Tolley, Resummation of Massive Gravity, Phys. Rev. Lett.
106 (2011) 231101 [arXiv:1011.1232] [INSPIRE].
ADS
Article
Google Scholar
K. Hinterbichler, Theoretical Aspects of Massive Gravity, Rev. Mod. Phys.
84 (2012) 671 [arXiv:1105.3735] [INSPIRE].
ADS
Article
Google Scholar
C. de Rham, Galileons in the Sky, Comptes Rendus Physique
13 (2012) 666 [arXiv:1204.5492] [INSPIRE].
ADS
Article
Google Scholar
C. de Rham and A.J. Tolley, DBI and the Galileon reunited, JCAP
05 (2010) 015 [arXiv:1003.5917] [INSPIRE].
Article
Google Scholar
K. Hinterbichler, M. Trodden and D. Wesley, Multi-field galileons and higher co-dimension branes, Phys. Rev.
D 82 (2010) 124018 [arXiv:1008.1305] [INSPIRE].
ADS
Google Scholar
G. Goon, K. Hinterbichler and M. Trodden, Symmetries for Galileons and DBI scalars on curved space, JCAP
07 (2011) 017 [arXiv:1103.5745] [INSPIRE].
ADS
Article
Google Scholar
G. Goon, K. Hinterbichler and M. Trodden, A New Class of Effective Field Theories from Embedded Branes, Phys. Rev. Lett.
106 (2011) 231102 [arXiv:1103.6029] [INSPIRE].
ADS
Article
Google Scholar
A.I. Vainshtein, To the problem of nonvanishing gravitation mass, Phys. Lett.
B 39 (1972) 393 [INSPIRE].
ADS
Article
Google Scholar
E. Babichev and C. Deffayet, An introduction to the Vainshtein mechanism, Class. Quant. Grav.
30 (2013) 184001 [arXiv:1304.7240] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
G. Goon, K. Hinterbichler, A. Joyce and M. Trodden, Aspects of Galileon Non-Renormalization, JHEP
11 (2016) 100 [arXiv:1606.02295] [INSPIRE].
ADS
Article
Google Scholar
G. Goon, K. Hinterbichler and M. Trodden, Galileons on Cosmological Backgrounds, JCAP
12 (2011) 004 [arXiv:1109.3450] [INSPIRE].
ADS
Article
Google Scholar
M. Trodden and K. Hinterbichler, Generalizing Galileons, Class. Quant. Grav.
28 (2011) 204003 [arXiv:1104.2088] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
G. Goon, K. Hinterbichler, A. Joyce and M. Trodden, Galileons as Wess-Zumino Terms, JHEP
06 (2012) 004 [arXiv:1203.3191] [INSPIRE].
ADS
Article
Google Scholar
G. Dvali, A. Gruzinov and M. Zaldarriaga, The accelerated universe and the moon, Phys. Rev.
D 68 (2003) 024012 [hep-ph/0212069] [INSPIRE].
A. Adams, N. Arkani-Hamed, S. Dubovsky, A. Nicolis and R. Rattazzi, Causality, analyticity and an IR obstruction to UV completion, JHEP
10 (2006) 014 [hep-th/0602178] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
G.L. Goon, K. Hinterbichler and M. Trodden, Stability and superluminality of spherical DBI galileon solutions, Phys. Rev.
D 83 (2011) 085015 [arXiv:1008.4580] [INSPIRE].
ADS
Google Scholar
M. Andrews, K. Hinterbichler, J. Khoury and M. Trodden, Instabilities of Spherical Solutions with Multiple Galileons and SO(N) Symmetry, Phys. Rev.
D 83 (2011) 044042 [arXiv:1008.4128] [INSPIRE].
ADS
Google Scholar
J. Evslin and T. Qiu, Closed Timelike Curves in the Galileon Model, JHEP
11 (2011) 032 [arXiv:1106.0570] [INSPIRE].
ADS
Article
MATH
Google Scholar
T.L. Curtright and D.B. Fairlie, A Galileon Primer, arXiv:1212.6972 [INSPIRE].
P. de Fromont, C. de Rham, L. Heisenberg and A. Matas, Superluminality in the Bi- and Multi-Galileon, JHEP
07 (2013) 067 [arXiv:1303.0274] [INSPIRE].
Article
Google Scholar
S. Garcia-Saenz, Behavior of perturbations on spherically symmetric backgrounds in multi-Galileon theory, Phys. Rev.
D 87 (2013) 104012 [arXiv:1303.2905] [INSPIRE].
ADS
Google Scholar
L. Berezhiani, G. Chkareuli and G. Gabadadze, Restricted Galileons, Phys. Rev.
D 88 (2013) 124020 [arXiv:1302.0549] [INSPIRE].
ADS
Google Scholar
G. Gabadadze, R. Kimura and D. Pirtskhalava, Vainshtein Solutions Without Superluminal Modes, Phys. Rev.
D 91 (2015) 124024 [arXiv:1412.8751] [INSPIRE].
ADS
MathSciNet
Google Scholar
K. Hinterbichler, A. Nicolis and M. Porrati, Superluminality in DGP, JHEP
09 (2009) 089 [arXiv:0905.2359] [INSPIRE].
ADS
Article
Google Scholar
S. Deser, A. Waldron and G. Zahariade, Propagation peculiarities of mean field massive gravity, Phys. Lett.
B 749 (2015) 144 [arXiv:1504.02919] [INSPIRE].
ADS
Article
Google Scholar
P. Creminelli, M. Serone, G. Trevisan and E. Trincherini, Inequivalence of Coset Constructions for Spacetime Symmetries, JHEP
02 (2015) 037 [arXiv:1403.3095] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
S.D. Mathur, The information paradox: A pedagogical introduction, Class. Quant. Grav.
26 (2009) 224001 [arXiv:0909.1038] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
S.D. Mathur, The fuzzball proposal for black holes: An elementary review, Fortsch. Phys.
53 (2005) 793 [hep-th/0502050] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
G. Dvali and C. Gomez, Black Hole's Quantum N-Portrait, Fortsch. Phys.
61 (2013) 742 [arXiv:1112.3359] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
A. Almheiri, D. Marolf, J. Polchinski and J. Sully, Black Holes: Complementarity or Firewalls?, JHEP
02 (2013) 062 [arXiv:1207.3123] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
G. Dvali, G.F. Giudice, C. Gomez and A. Kehagias, UV-Completion by Classicalization, JHEP
08 (2011) 108 [arXiv:1010.1415] [INSPIRE].
ADS
Article
MATH
Google Scholar
L. Keltner and A.J. Tolley, UV properties of Galileons: Spectral Densities, arXiv:1502.05706 [INSPIRE].
R. Klein, M. Ozkan and D. Roest, Galileons as the Scalar Analogue of General Relativity, Phys. Rev.
D 93 (2016) 044053 [arXiv:1510.08864] [INSPIRE].
ADS
MathSciNet
Google Scholar
S.M. Carroll, Spacetime and geometry: An introduction to general relativity, Addison Wesley (2004).
C.W. Misner, K.S. Thorne and J.A. Wheeler, Gravitation, W.H. Freeman, San Francisco, U.S.A. (1973).
Google Scholar
N. Arkani-Hamed, L. Motl, A. Nicolis and C. Vafa, The string landscape, black holes and gravity as the weakest force, JHEP
06 (2007) 060 [hep-th/0601001] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
X.O. Camanho, J.D. Edelstein, J. Maldacena and A. Zhiboedov, Causality Constraints on Corrections to the Graviton Three-Point Coupling, JHEP
02 (2016) 020 [arXiv:1407.5597] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
K. Benakli, S. Chapman, L. Darmé and Y. Oz, Superluminal graviton propagation, Phys. Rev.
D 94 (2016) 084026 [arXiv:1512.07245] [INSPIRE].
ADS
Google Scholar
J. Jing, S. Chen and Q. Pan, Geometric optics for a coupling model of electromagnetic and gravitational fields, Annals Phys.
367 (2016) 219 [arXiv:1510.03316] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
R. Penrose, On Schwarzschild Causality — A Problem for “Lorentz Covariant” General Relativity, in Essays in General Relativity: A Festschrift for Abraham Taub, Academic Press (1980).
S. Gao and R.M. Wald, Theorems on gravitational time delay and related issues, Class. Quant. Grav.
17 (2000) 4999 [gr-qc/0007021] [INSPIRE].
S.D. Majumdar, A class of exact solutions of Einstein's field equations, Phys. Rev.
72 (1947) 390 [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
A. Papaetrou, A static solution of the equations of the gravitational field for an arbitrary charge distribution, Proc. Roy. Irish Acad.
A 51 (1947) 191 [INSPIRE].
MathSciNet
Google Scholar
J.B. Hartle and S.W. Hawking, Solutions of the Einstein-Maxwell equations with many black holes, Commun. Math. Phys.
26 (1972) 87 [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
M.D. Schwartz, Quantum Field Theory and the Standard Model, Cambridge University Press, (2014).
E.T. Akhmedov, H. Godazgar and F.K. Popov, Hawking radiation and secularly growing loop corrections, Phys. Rev.
D 93 (2016) 024029 [arXiv:1508.07500] [INSPIRE].
ADS
MathSciNet
Google Scholar
A. Kamenev, Field Theory of Non-Equilibrium Systems, Cambridge University Press, (2011).
S. Weinberg, Quantum contributions to cosmological correlations, Phys. Rev.
D 72 (2005) 043514 [hep-th/0506236] [INSPIRE].
ADS
MathSciNet
Google Scholar
M.J. Duff, Quantum Tree Graphs and the Schwarzschild Solution, Phys. Rev.
D 7 (1973) 2317 [INSPIRE].
ADS
Google Scholar
M.J. Duff, Quantum corrections to the Schwarzschild solution, Phys. Rev.
D 9 (1974) 1837 [INSPIRE].
ADS
Google Scholar
G.W. Gibbons, Vacuum Polarization and the Spontaneous Loss of Charge by Black Holes, Commun. Math. Phys.
44 (1975) 245 [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
G. Goon and K. Hinterbichler, in preparation.
G. ’t Hooft and M.J.G. Veltman, One loop divergencies in the theory of gravitation, Annales Poincare Phys. Theor.
A 20 (1974) 69.
M.H. Goro and A. Sagnotti, The Ultraviolet Behavior of Einstein Gravity, Nucl. Phys.
B 266 (1986) 709 [INSPIRE].
ADS
Google Scholar
D.M. Capper, M.J. Duff and L. Halpern, Photon corrections to the graviton propagator, Phys. Rev.
D 10 (1974) 461 [INSPIRE].
ADS
Google Scholar
J.F. Donoghue, B.R. Holstein, B. Garbrecht and T. Konstandin, Quantum corrections to the Reissner-Nordstrom and Kerr-Newman metrics, Phys. Lett.
B 529 (2002) 132 [Erratum ibid.
B 612 (2005) 311] [hep-th/0112237] [INSPIRE].
N.E.J. Bjerrum-Bohr, J.F. Donoghue and B.R. Holstein, Quantum corrections to the Schwarzschild and Kerr metrics, Phys. Rev.
D 68 (2003) 084005 [Erratum ibid.
D 71 (2005) 069904] [hep-th/0211071] [INSPIRE].
G.G. Kirilin, Quantum corrections to the Schwarzschild metric and reparametrization transformations, Phys. Rev.
D 75 (2007) 108501 [gr-qc/0601020] [INSPIRE].
C.P. Burgess, Quantum gravity in everyday life: General relativity as an effective field theory, Living Rev. Rel.
7 (2004) 5 [gr-qc/0311082] [INSPIRE].
J.F. Donoghue, General relativity as an effective field theory: The leading quantum corrections, Phys. Rev.
D 50 (1994) 3874 [gr-qc/9405057] [INSPIRE].
L.F. Abbott, Introduction to the Background Field Method, Acta Phys. Polon.
B 13 (1982) 33 [INSPIRE].
MathSciNet
Google Scholar
D.A.R. Dalvit and F.D. Mazzitelli, Geodesics, gravitons and the gauge fixing problem, Phys. Rev.
D 56 (1997) 7779 [hep-th/9708102] [INSPIRE].
ADS
MathSciNet
Google Scholar
A.O. Barvinsky and G.A. Vilkovisky, The Generalized Schwinger-Dewitt Technique in Gauge Theories and Quantum Gravity, Phys. Rept.
119 (1985) 1 [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
A. Andreassen, W. Frost and M.D. Schwartz, Consistent Use of Effective Potentials, Phys. Rev.
D 91 (2015) 016009 [arXiv:1408.0287] [INSPIRE].
ADS
Google Scholar
N.K. Nielsen, On the Gauge Dependence of Spontaneous Symmetry Breaking in Gauge Theories, Nucl. Phys.
B 101 (1975) 173 [INSPIRE].
ADS
Article
Google Scholar
R. Fukuda and T. Kugo, Gauge Invariance in the Effective Action and Potential, Phys. Rev.
D 13 (1976) 3469 [INSPIRE].
ADS
Google Scholar
I.J.R. Aitchison and C.M. Fraser, Gauge Invariance and the Effective Potential, Annals Phys.
156 (1984) 1 [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
N.E.J. Bjerrum-Bohr, J.F. Donoghue and B.R. Holstein, Quantum gravitational corrections to the nonrelativistic scattering potential of two masses, Phys. Rev.
D 67 (2003) 084033 [Erratum ibid.
D 71 (2005) 069903] [hep-th/0211072] [INSPIRE].
I.B. Khriplovich and G.G. Kirilin, Quantum power correction to the Newton law, J. Exp. Theor. Phys.
95 (2002) 981 [gr-qc/0207118] [INSPIRE].
B.R. Holstein and A. Ross, Long Distance Effects in Mixed Electromagnetic-Gravitational Scattering, arXiv:0802.0717 [INSPIRE].
N.E.J. Bjerrum-Bohr, Leading quantum gravitational corrections to scalar QED, Phys. Rev.
D 66 (2002) 084023 [hep-th/0206236] [INSPIRE].
ADS
Google Scholar
S.L. Adler, Photon splitting and photon dispersion in a strong magnetic field, Annals Phys.
67 (1971) 599 [INSPIRE].
ADS
Article
Google Scholar
A.K. Harding and D. Lai, Physics of Strongly Magnetized Neutron Stars, Rept. Prog. Phys.
69 (2006) 2631 [astro-ph/0606674] [INSPIRE].
R. Ruffini, Y.-B. Wu and S.-S. Xue, Einstein-Euler-Heisenberg Theory and charged black holes, Phys. Rev.
D 88 (2013) 085004 [arXiv:1307.4951] [INSPIRE].
ADS
Google Scholar
H. Yajima and T. Tamaki, Black hole solutions in Euler-Heisenberg theory, Phys. Rev.
D 63 (2001) 064007 [gr-qc/0005016] [INSPIRE].
Y. Kats, L. Motl and M. Padi, Higher-order corrections to mass-charge relation of extremal black holes, JHEP
12 (2007) 068 [hep-th/0606100] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
D. Marolf and J. Polchinski, Gauge/Gravity Duality and the Black Hole Interior, Phys. Rev. Lett.
111 (2013) 171301 [arXiv:1307.4706] [INSPIRE].
ADS
Article
Google Scholar
W. Heisenberg and H. Euler, Consequences of Dirac’s theory of positrons, Z. Phys.
98 (1936) 714 [physics/0605038] [INSPIRE].