Skip to main content

Superluminality, black holes and EFT

A preprint version of the article is available at arXiv.

Abstract

Under the assumption that a UV theory does not display superluminal behavior, we ask what constraints on superluminality are satisfied in the effective field theory (EFT). We study two examples of effective theories: quantum electrodynamics (QED) coupled to gravity after the electron is integrated out, and the flat-space galileon. The first is realized in nature, the second is more speculative, but they both exhibit apparent superluminality around non-trivial backgrounds. In the QED case, we attempt, and fail, to find backgrounds for which the superluminal signal advance can be made larger than the putative resolving power of the EFT. In contrast, in the galileon case it is easy to find such backgrounds, indicating that if the UV completion of the galileon is (sub)luminal, quantum corrections must become important at distance scales of order the Vainshtein radius of the background configuration, much larger than the naive EFT strong coupling distance scale. Such corrections would be reminiscent of the non-perturbative Schwarzschild scale quantum effects that are expected to resolve the black hole information problem. Finally, a byproduct of our analysis is a calculation of how perturbative quantum effects alter charged Reissner-Nordstrom black holes.

References

  1. E. Babichev, V. Mukhanov and A. Vikman, k-Essence, superluminal propagation, causality and emergent geometry, JHEP 02 (2008) 101 [arXiv:0708.0561] [INSPIRE].

  2. R. Geroch, Faster Than Light?, AMS/IP Stud. Adv. Math. 49 (2011) 59 [arXiv:1005.1614] [INSPIRE].

    MathSciNet  MATH  Google Scholar 

  3. C. Burrage, C. de Rham, L. Heisenberg and A.J. Tolley, Chronology Protection in Galileon Models and Massive Gravity, JCAP 07 (2012) 004 [arXiv:1111.5549] [INSPIRE].

    ADS  Article  Google Scholar 

  4. G. Papallo and H.S. Reall, Graviton time delay and a speed limit for small black holes in Einstein-Gauss-Bonnet theory, JHEP 11 (2015) 109 [arXiv:1508.05303] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  5. J. Friedman et al., Cauchy problem in space-times with closed timelike curves, Phys. Rev. D 42 (1990) 1915 [INSPIRE].

    ADS  Google Scholar 

  6. I.T. Drummond and S.J. Hathrell, QED Vacuum Polarization in a Background Gravitational Field and Its Effect on the Velocity of Photons, Phys. Rev. D 22 (1980) 343 [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  7. S. Dubovsky, A. Nicolis, E. Trincherini and G. Villadoro, Microcausality in curved space-time, Phys. Rev. D 77 (2008) 084016 [arXiv:0709.1483] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  8. G.M. Shore, ‘Faster than light’ photons in gravitational fields: Causality, anomalies and horizons, Nucl. Phys. B 460 (1996) 379 [gr-qc/9504041] [INSPIRE].

  9. G.M. Shore, Quantum gravitational optics, Contemp. Phys. 44 (2003) 503 [gr-qc/0304059] [INSPIRE].

  10. G.M. Shore, Superluminality and UV completion, Nucl. Phys. B 778 (2007) 219 [hep-th/0701185] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  11. I.B. Khriplovich, Superluminal velocity of photons in a gravitational background, Phys. Lett. B 346 (1995) 251 [gr-qc/9411052] [INSPIRE].

  12. S. Mohanty and A.R. Prasanna, Photon propagation in Einstein and higher derivative gravity, Nucl. Phys. B 526 (1998) 501 [gr-qc/9804017] [INSPIRE].

  13. G. Preti, A note on the geometrical-optics solution to the Maxwell tensor wave equation in curved spacetime, Nucl. Phys. B 834 (2010) 390 [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  14. R. Akhoury and A.D. Dolgov, On the Possibility of Super-luminal Propagation in a Gravitational Background, arXiv:1003.6110 [INSPIRE].

  15. R.D. Daniels and G.M. Shore, ‘Faster than light’ photons and charged black holes, Nucl. Phys. B 425 (1994) 634 [hep-th/9310114] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  16. R.D. Daniels and G.M. Shore, ‘Faster than light’ photons and rotating black holes, Phys. Lett. B 367 (1996) 75 [gr-qc/9508048] [INSPIRE].

  17. T.J. Hollowood and G.M. Shore, Causality and Micro-Causality in Curved Spacetime, Phys. Lett. B 655 (2007) 67 [arXiv:0707.2302] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  18. T.J. Hollowood and G.M. Shore, The refractive index of curved spacetime: The fate of causality in QED, Nucl. Phys. B 795 (2008) 138 [arXiv:0707.2303] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  19. T.J. Hollowood and G.M. Shore, The Causal Structure of QED in Curved Spacetime: Analyticity and the Refractive Index, JHEP 12 (2008) 091 [arXiv:0806.1019] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  20. T.J. Hollowood, G.M. Shore and R.J. Stanley, The Refractive Index of Curved Spacetime II: QED, Penrose Limits and Black Holes, JHEP 08 (2009) 089 [arXiv:0905.0771] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  21. T.J. Hollowood and G.M. Shore, The Effect of Gravitational Tidal Forces on Vacuum Polarization: How to Undress a Photon, Phys. Lett. B 691 (2010) 279 [arXiv:1006.0145] [INSPIRE].

    ADS  Article  Google Scholar 

  22. T.J. Hollowood and G.M. Shore, ‘Superluminal’ Photon Propagation in QED in Curved Spacetime is Dispersive and Causal, arXiv:1006.1238 [INSPIRE].

  23. T.J. Hollowood and G.M. Shore, The Effect of Gravitational Tidal Forces on Renormalized Quantum Fields, JHEP 02 (2012) 120 [arXiv:1111.3174] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  24. T.J. Hollowood and G.M. Shore, The Unbearable Beingness of Light, Dressing and Undressing Photons in Black Hole Spacetimes, Int. J. Mod. Phys. D 21 (2012) 1241003 [arXiv:1205.3291] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  25. T.J. Hollowood and G.M. Shore, Causality Violation, Gravitational Shockwaves and UV Completion, JHEP 03 (2016) 129 [arXiv:1512.04952] [INSPIRE].

    ADS  Article  Google Scholar 

  26. T.J. Hollowood and G.M. Shore, Causality, Renormalizability and Ultra-High Energy Gravitational Scattering, J. Phys. A 49 (2016) 215401 [arXiv:1601.06989] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  27. J.Z. Simon, Higher Derivative Lagrangians, Nonlocality, Problems and Solutions, Phys. Rev. D 41 (1990) 3720 [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  28. X. Jaen, J. Llosa and A. Molina, A reduction of order two for infinite order lagrangians, Phys. Rev. D 34 (1986) 2302 [INSPIRE].

    ADS  Google Scholar 

  29. C.P. Burgess and M. Williams, Who You Gonna Call? Runaway Ghosts, Higher Derivatives and Time-Dependence in EFTs, JHEP 08 (2014) 074 [arXiv:1404.2236] [INSPIRE].

    ADS  Article  Google Scholar 

  30. L. Brillouin, Wave Propagation and Group Velocity, Series in Pure & Applied Physics), Elsevier (1960).

  31. P. Milonni, Fast Light, Slow Light and Left-Handed Light, Series in Optics and Optoelectronics, CRC Press (2004).

  32. C. de Rham, Massive Gravity, Living Rev. Rel. 17 (2014) 7 [arXiv:1401.4173] [INSPIRE].

    Article  MATH  Google Scholar 

  33. A. Nicolis, R. Rattazzi and E. Trincherini, The Galileon as a local modification of gravity, Phys. Rev. D 79 (2009) 064036 [arXiv:0811.2197] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  34. G.R. Dvali, G. Gabadadze and M. Porrati, 4 – D gravity on a brane in 5 – D Minkowski space, Phys. Lett. B 485 (2000) 208 [hep-th/0005016] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  35. M.A. Luty, M. Porrati and R. Rattazzi, Strong interactions and stability in the DGP model, JHEP 09 (2003) 029 [hep-th/0303116] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  36. C. de Rham, G. Gabadadze and A.J. Tolley, Resummation of Massive Gravity, Phys. Rev. Lett. 106 (2011) 231101 [arXiv:1011.1232] [INSPIRE].

    ADS  Article  Google Scholar 

  37. K. Hinterbichler, Theoretical Aspects of Massive Gravity, Rev. Mod. Phys. 84 (2012) 671 [arXiv:1105.3735] [INSPIRE].

    ADS  Article  Google Scholar 

  38. C. de Rham, Galileons in the Sky, Comptes Rendus Physique 13 (2012) 666 [arXiv:1204.5492] [INSPIRE].

    ADS  Article  Google Scholar 

  39. C. de Rham and A.J. Tolley, DBI and the Galileon reunited, JCAP 05 (2010) 015 [arXiv:1003.5917] [INSPIRE].

    Article  Google Scholar 

  40. K. Hinterbichler, M. Trodden and D. Wesley, Multi-field galileons and higher co-dimension branes, Phys. Rev. D 82 (2010) 124018 [arXiv:1008.1305] [INSPIRE].

    ADS  Google Scholar 

  41. G. Goon, K. Hinterbichler and M. Trodden, Symmetries for Galileons and DBI scalars on curved space, JCAP 07 (2011) 017 [arXiv:1103.5745] [INSPIRE].

    ADS  Article  Google Scholar 

  42. G. Goon, K. Hinterbichler and M. Trodden, A New Class of Effective Field Theories from Embedded Branes, Phys. Rev. Lett. 106 (2011) 231102 [arXiv:1103.6029] [INSPIRE].

    ADS  Article  Google Scholar 

  43. A.I. Vainshtein, To the problem of nonvanishing gravitation mass, Phys. Lett. B 39 (1972) 393 [INSPIRE].

    ADS  Article  Google Scholar 

  44. E. Babichev and C. Deffayet, An introduction to the Vainshtein mechanism, Class. Quant. Grav. 30 (2013) 184001 [arXiv:1304.7240] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  45. G. Goon, K. Hinterbichler, A. Joyce and M. Trodden, Aspects of Galileon Non-Renormalization, JHEP 11 (2016) 100 [arXiv:1606.02295] [INSPIRE].

    ADS  Article  Google Scholar 

  46. G. Goon, K. Hinterbichler and M. Trodden, Galileons on Cosmological Backgrounds, JCAP 12 (2011) 004 [arXiv:1109.3450] [INSPIRE].

    ADS  Article  Google Scholar 

  47. M. Trodden and K. Hinterbichler, Generalizing Galileons, Class. Quant. Grav. 28 (2011) 204003 [arXiv:1104.2088] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  48. G. Goon, K. Hinterbichler, A. Joyce and M. Trodden, Galileons as Wess-Zumino Terms, JHEP 06 (2012) 004 [arXiv:1203.3191] [INSPIRE].

    ADS  Article  Google Scholar 

  49. G. Dvali, A. Gruzinov and M. Zaldarriaga, The accelerated universe and the moon, Phys. Rev. D 68 (2003) 024012 [hep-ph/0212069] [INSPIRE].

  50. A. Adams, N. Arkani-Hamed, S. Dubovsky, A. Nicolis and R. Rattazzi, Causality, analyticity and an IR obstruction to UV completion, JHEP 10 (2006) 014 [hep-th/0602178] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  51. G.L. Goon, K. Hinterbichler and M. Trodden, Stability and superluminality of spherical DBI galileon solutions, Phys. Rev. D 83 (2011) 085015 [arXiv:1008.4580] [INSPIRE].

    ADS  Google Scholar 

  52. M. Andrews, K. Hinterbichler, J. Khoury and M. Trodden, Instabilities of Spherical Solutions with Multiple Galileons and SO(N) Symmetry, Phys. Rev. D 83 (2011) 044042 [arXiv:1008.4128] [INSPIRE].

    ADS  Google Scholar 

  53. J. Evslin and T. Qiu, Closed Timelike Curves in the Galileon Model, JHEP 11 (2011) 032 [arXiv:1106.0570] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  54. T.L. Curtright and D.B. Fairlie, A Galileon Primer, arXiv:1212.6972 [INSPIRE].

  55. P. de Fromont, C. de Rham, L. Heisenberg and A. Matas, Superluminality in the Bi- and Multi-Galileon, JHEP 07 (2013) 067 [arXiv:1303.0274] [INSPIRE].

    Article  Google Scholar 

  56. S. Garcia-Saenz, Behavior of perturbations on spherically symmetric backgrounds in multi-Galileon theory, Phys. Rev. D 87 (2013) 104012 [arXiv:1303.2905] [INSPIRE].

    ADS  Google Scholar 

  57. L. Berezhiani, G. Chkareuli and G. Gabadadze, Restricted Galileons, Phys. Rev. D 88 (2013) 124020 [arXiv:1302.0549] [INSPIRE].

    ADS  Google Scholar 

  58. G. Gabadadze, R. Kimura and D. Pirtskhalava, Vainshtein Solutions Without Superluminal Modes, Phys. Rev. D 91 (2015) 124024 [arXiv:1412.8751] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  59. K. Hinterbichler, A. Nicolis and M. Porrati, Superluminality in DGP, JHEP 09 (2009) 089 [arXiv:0905.2359] [INSPIRE].

    ADS  Article  Google Scholar 

  60. S. Deser, A. Waldron and G. Zahariade, Propagation peculiarities of mean field massive gravity, Phys. Lett. B 749 (2015) 144 [arXiv:1504.02919] [INSPIRE].

    ADS  Article  Google Scholar 

  61. P. Creminelli, M. Serone, G. Trevisan and E. Trincherini, Inequivalence of Coset Constructions for Spacetime Symmetries, JHEP 02 (2015) 037 [arXiv:1403.3095] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  62. S.D. Mathur, The information paradox: A pedagogical introduction, Class. Quant. Grav. 26 (2009) 224001 [arXiv:0909.1038] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  63. S.D. Mathur, The fuzzball proposal for black holes: An elementary review, Fortsch. Phys. 53 (2005) 793 [hep-th/0502050] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  64. G. Dvali and C. Gomez, Black Hole's Quantum N-Portrait, Fortsch. Phys. 61 (2013) 742 [arXiv:1112.3359] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  65. A. Almheiri, D. Marolf, J. Polchinski and J. Sully, Black Holes: Complementarity or Firewalls?, JHEP 02 (2013) 062 [arXiv:1207.3123] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  66. G. Dvali, G.F. Giudice, C. Gomez and A. Kehagias, UV-Completion by Classicalization, JHEP 08 (2011) 108 [arXiv:1010.1415] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  67. L. Keltner and A.J. Tolley, UV properties of Galileons: Spectral Densities, arXiv:1502.05706 [INSPIRE].

  68. R. Klein, M. Ozkan and D. Roest, Galileons as the Scalar Analogue of General Relativity, Phys. Rev. D 93 (2016) 044053 [arXiv:1510.08864] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  69. S.M. Carroll, Spacetime and geometry: An introduction to general relativity, Addison Wesley (2004).

  70. C.W. Misner, K.S. Thorne and J.A. Wheeler, Gravitation, W.H. Freeman, San Francisco, U.S.A. (1973).

    Google Scholar 

  71. N. Arkani-Hamed, L. Motl, A. Nicolis and C. Vafa, The string landscape, black holes and gravity as the weakest force, JHEP 06 (2007) 060 [hep-th/0601001] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  72. X.O. Camanho, J.D. Edelstein, J. Maldacena and A. Zhiboedov, Causality Constraints on Corrections to the Graviton Three-Point Coupling, JHEP 02 (2016) 020 [arXiv:1407.5597] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  73. K. Benakli, S. Chapman, L. Darmé and Y. Oz, Superluminal graviton propagation, Phys. Rev. D 94 (2016) 084026 [arXiv:1512.07245] [INSPIRE].

    ADS  Google Scholar 

  74. J. Jing, S. Chen and Q. Pan, Geometric optics for a coupling model of electromagnetic and gravitational fields, Annals Phys. 367 (2016) 219 [arXiv:1510.03316] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  75. R. Penrose, On Schwarzschild Causality — A Problem for “Lorentz Covariant” General Relativity, in Essays in General Relativity: A Festschrift for Abraham Taub, Academic Press (1980).

  76. S. Gao and R.M. Wald, Theorems on gravitational time delay and related issues, Class. Quant. Grav. 17 (2000) 4999 [gr-qc/0007021] [INSPIRE].

  77. S.D. Majumdar, A class of exact solutions of Einstein's field equations, Phys. Rev. 72 (1947) 390 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  78. A. Papaetrou, A static solution of the equations of the gravitational field for an arbitrary charge distribution, Proc. Roy. Irish Acad. A 51 (1947) 191 [INSPIRE].

    MathSciNet  Google Scholar 

  79. J.B. Hartle and S.W. Hawking, Solutions of the Einstein-Maxwell equations with many black holes, Commun. Math. Phys. 26 (1972) 87 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  80. M.D. Schwartz, Quantum Field Theory and the Standard Model, Cambridge University Press, (2014).

  81. E.T. Akhmedov, H. Godazgar and F.K. Popov, Hawking radiation and secularly growing loop corrections, Phys. Rev. D 93 (2016) 024029 [arXiv:1508.07500] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  82. A. Kamenev, Field Theory of Non-Equilibrium Systems, Cambridge University Press, (2011).

  83. S. Weinberg, Quantum contributions to cosmological correlations, Phys. Rev. D 72 (2005) 043514 [hep-th/0506236] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  84. M.J. Duff, Quantum Tree Graphs and the Schwarzschild Solution, Phys. Rev. D 7 (1973) 2317 [INSPIRE].

    ADS  Google Scholar 

  85. M.J. Duff, Quantum corrections to the Schwarzschild solution, Phys. Rev. D 9 (1974) 1837 [INSPIRE].

    ADS  Google Scholar 

  86. G.W. Gibbons, Vacuum Polarization and the Spontaneous Loss of Charge by Black Holes, Commun. Math. Phys. 44 (1975) 245 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  87. G. Goon and K. Hinterbichler, in preparation.

  88. G. ’t Hooft and M.J.G. Veltman, One loop divergencies in the theory of gravitation, Annales Poincare Phys. Theor. A 20 (1974) 69.

  89. M.H. Goro and A. Sagnotti, The Ultraviolet Behavior of Einstein Gravity, Nucl. Phys. B 266 (1986) 709 [INSPIRE].

    ADS  Google Scholar 

  90. D.M. Capper, M.J. Duff and L. Halpern, Photon corrections to the graviton propagator, Phys. Rev. D 10 (1974) 461 [INSPIRE].

    ADS  Google Scholar 

  91. J.F. Donoghue, B.R. Holstein, B. Garbrecht and T. Konstandin, Quantum corrections to the Reissner-Nordstrom and Kerr-Newman metrics, Phys. Lett. B 529 (2002) 132 [Erratum ibid. B 612 (2005) 311] [hep-th/0112237] [INSPIRE].

  92. N.E.J. Bjerrum-Bohr, J.F. Donoghue and B.R. Holstein, Quantum corrections to the Schwarzschild and Kerr metrics, Phys. Rev. D 68 (2003) 084005 [Erratum ibid. D 71 (2005) 069904] [hep-th/0211071] [INSPIRE].

  93. G.G. Kirilin, Quantum corrections to the Schwarzschild metric and reparametrization transformations, Phys. Rev. D 75 (2007) 108501 [gr-qc/0601020] [INSPIRE].

  94. C.P. Burgess, Quantum gravity in everyday life: General relativity as an effective field theory, Living Rev. Rel. 7 (2004) 5 [gr-qc/0311082] [INSPIRE].

  95. J.F. Donoghue, General relativity as an effective field theory: The leading quantum corrections, Phys. Rev. D 50 (1994) 3874 [gr-qc/9405057] [INSPIRE].

  96. L.F. Abbott, Introduction to the Background Field Method, Acta Phys. Polon. B 13 (1982) 33 [INSPIRE].

    MathSciNet  Google Scholar 

  97. D.A.R. Dalvit and F.D. Mazzitelli, Geodesics, gravitons and the gauge fixing problem, Phys. Rev. D 56 (1997) 7779 [hep-th/9708102] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  98. A.O. Barvinsky and G.A. Vilkovisky, The Generalized Schwinger-Dewitt Technique in Gauge Theories and Quantum Gravity, Phys. Rept. 119 (1985) 1 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  99. A. Andreassen, W. Frost and M.D. Schwartz, Consistent Use of Effective Potentials, Phys. Rev. D 91 (2015) 016009 [arXiv:1408.0287] [INSPIRE].

    ADS  Google Scholar 

  100. N.K. Nielsen, On the Gauge Dependence of Spontaneous Symmetry Breaking in Gauge Theories, Nucl. Phys. B 101 (1975) 173 [INSPIRE].

    ADS  Article  Google Scholar 

  101. R. Fukuda and T. Kugo, Gauge Invariance in the Effective Action and Potential, Phys. Rev. D 13 (1976) 3469 [INSPIRE].

    ADS  Google Scholar 

  102. I.J.R. Aitchison and C.M. Fraser, Gauge Invariance and the Effective Potential, Annals Phys. 156 (1984) 1 [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  103. N.E.J. Bjerrum-Bohr, J.F. Donoghue and B.R. Holstein, Quantum gravitational corrections to the nonrelativistic scattering potential of two masses, Phys. Rev. D 67 (2003) 084033 [Erratum ibid. D 71 (2005) 069903] [hep-th/0211072] [INSPIRE].

  104. I.B. Khriplovich and G.G. Kirilin, Quantum power correction to the Newton law, J. Exp. Theor. Phys. 95 (2002) 981 [gr-qc/0207118] [INSPIRE].

  105. B.R. Holstein and A. Ross, Long Distance Effects in Mixed Electromagnetic-Gravitational Scattering, arXiv:0802.0717 [INSPIRE].

  106. N.E.J. Bjerrum-Bohr, Leading quantum gravitational corrections to scalar QED, Phys. Rev. D 66 (2002) 084023 [hep-th/0206236] [INSPIRE].

    ADS  Google Scholar 

  107. S.L. Adler, Photon splitting and photon dispersion in a strong magnetic field, Annals Phys. 67 (1971) 599 [INSPIRE].

    ADS  Article  Google Scholar 

  108. A.K. Harding and D. Lai, Physics of Strongly Magnetized Neutron Stars, Rept. Prog. Phys. 69 (2006) 2631 [astro-ph/0606674] [INSPIRE].

  109. R. Ruffini, Y.-B. Wu and S.-S. Xue, Einstein-Euler-Heisenberg Theory and charged black holes, Phys. Rev. D 88 (2013) 085004 [arXiv:1307.4951] [INSPIRE].

    ADS  Google Scholar 

  110. H. Yajima and T. Tamaki, Black hole solutions in Euler-Heisenberg theory, Phys. Rev. D 63 (2001) 064007 [gr-qc/0005016] [INSPIRE].

  111. Y. Kats, L. Motl and M. Padi, Higher-order corrections to mass-charge relation of extremal black holes, JHEP 12 (2007) 068 [hep-th/0606100] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  112. D. Marolf and J. Polchinski, Gauge/Gravity Duality and the Black Hole Interior, Phys. Rev. Lett. 111 (2013) 171301 [arXiv:1307.4706] [INSPIRE].

    ADS  Article  Google Scholar 

  113. W. Heisenberg and H. Euler, Consequences of Dirac’s theory of positrons, Z. Phys. 98 (1936) 714 [physics/0605038] [INSPIRE].

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Garrett Goon.

Additional information

ArXiv ePrint: 1609.00723

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Goon, G., Hinterbichler, K. Superluminality, black holes and EFT. J. High Energ. Phys. 2017, 134 (2017). https://doi.org/10.1007/JHEP02(2017)134

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP02(2017)134

Keywords

  • Black Holes
  • Effective field theories
  • Classical Theories of Gravity