Advertisement

Journal of High Energy Physics

, 2017:76 | Cite as

Complex linear superfields, supercurrents and supergravities

  • P. Kočí
  • K. Koutrolikos
  • R. von Unge
Open Access
Regular Article - Theoretical Physics

Abstract

We present expressions for the supercurrents generated by a generic 4D, \( \mathcal{N}=1 \) theory of complex linear superfield Σ. We verify that these expressions satisfy the appropriate superspace conservation equations. Furthermore, we discuss the component projection in order to derive expressions for the energy-momentum tensor, the supersymmetry current and the R-symmetry current when available. In addition, we discuss aspects of the coupling of the theory to supergravity. Specifically, we present a straightforward method to select the appropriate formulations of supergravity that one must use in order to do the coupling. This procedure is controlled by a superfield X originating from the Super-Poincaré invariance of ccthe theory. We apply these results to examples of theories with higher derivative terms.

Keywords

Supergravity Models Superspaces Supersymmetric Effective Theories Supersymmetry Breaking 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    S.J. Gates Jr. and W. Siegel, Variant superfield representations, Nucl. Phys. B187 (1981) 389 [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    W. Siegel, Gauge Spinor Superfield as a Scalar Multiplet, Phys. Lett. B85 (1979) 333 [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    U. Lindström and M. Roček, Scalar Tensor Duality and N = 1, N = 2 Nonlinear σ-models, Nucl. Phys. B222 (1983) 285 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  4. [4]
    B.B. Deo and S.J. Gates, Comments on nonminimal N = 1 scalar multiplets, Nucl. Phys. B254 (1985) 187 [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    S.M. Kuzenko, Higher spin super-Cotton tensors and generalisations of the linear-chiral duality in three dimensions, Phys. Lett. B763 (2016) 308 [1606.08624] [INSPIRE].
  6. [6]
    B.B. Deo and S.J. Gates Jr., Nonminimal N = 1 supergravity and broken global supersymmetry, Phys. Lett. B151 (1985) 195 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  7. [7]
    S.M. Kuzenko and S.J. Tyler, Complex linear superfield as a model for Goldstino, JHEP 04 (2011) 057 [1102.3042] [INSPIRE].
  8. [8]
    F. Farakos, S. Ferrara, A. Kehagias and M. Porrati, Supersymmetry Breaking by Higher Dimension Operators, Nucl. Phys. B879 (2014) 348 [1309.1476] [INSPIRE].
  9. [9]
    F. Farakos and R. von Unge, Complex Linear Effective Theory and Supersymmetry Breaking Vacua, Phys. Rev. D91 (2015) 045024 [1403.0935] [INSPIRE].
  10. [10]
    F. Farakos, O. Hulík, P. Kočí and R. von Unge, Non-minimal scalar multiplets, supersymmetry breaking and dualities, JHEP 09 (2015) 177 [1507.01885] [INSPIRE].
  11. [11]
    F. Farakos, P. Kočí and R. von Unge, Superspace Higher Derivative Terms in Two Dimensions, 1612.04361 [INSPIRE].
  12. [12]
    S. Ferrara and B. Zumino, Transformation Properties of the Supercurrent, Nucl. Phys. B87 (1975) 207 [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    Z. Komargodski and N. Seiberg, Comments on Supercurrent Multiplets, Supersymmetric Field Theories and Supergravity, JHEP 07 (2010) 017 [1002.2228] [INSPIRE].
  14. [14]
    S.M. Kuzenko, Variant supercurrents and Noether procedure, Eur. Phys. J. C71 (2011) 1513 [1008.1877] [INSPIRE].
  15. [15]
    S.M. Kuzenko, Variant supercurrent multiplets, JHEP 04 (2010) 022 [1002.4932] [INSPIRE].
  16. [16]
    H. Osborn, N = 1 superconformal symmetry in four-dimensional quantum field theory, Annals Phys. 272 (1999) 243 [hep-th/9808041] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  17. [17]
    M. Magro, I. Sachs and S. Wolf, Superfield Noether procedure, Annals Phys. 298 (2002) 123 [hep-th/0110131] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  18. [18]
    I.L. Buchbinder and S.M. Kuzenko, Ideas and methods of supersymmetry and supergravity: Or a walk through superspace, IOP, Bristol, U.K. (1998).Google Scholar
  19. [19]
    S.J. Gates, M.T. Grisaru, M. Roček and W. Siegel, Superspace Or One Thousand and One Lessons in Supersymmetry, Front. Phys. 58 (1983) 1 [hep-th/0108200] [INSPIRE].zbMATHGoogle Scholar
  20. [20]
    J. Wess and B. Zumino, Superfield Lagrangian for Supergravity, Phys. Lett. B74 (1978) 51 [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    K.S. Stelle and P.C. West, Minimal Auxiliary Fields for Supergravity, Phys. Lett. B74 (1978) 330 [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    S. Ferrara and P. van Nieuwenhuizen, The Auxiliary Fields of Supergravity, Phys. Lett. 74B (1978) 333 [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    M.F. Sohnius and P.C. West, An Alternative Minimal Off-Shell Version of N = 1 Supergravity, Phys. Lett. B105 (1981) 353 [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    P.S. Howe, K.S. Stelle and P.K. Townsend, The Vanishing Volume of N = 1 Superspace, Phys. Lett. B107 (1981) 420 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  25. [25]
    S.J. Gates Jr., M. Roček and W. Siegel, Solution to Constraints for n = 0 Supergravity, Nucl. Phys. B198 (1982) 113 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  26. [26]
    I.L. Buchbinder, S.J. Gates Jr., W.D. Linch III and J. Phillips, New 4-D, N = 1 superfield theory: Model of free massive superspin 3/2 multiplet, Phys. Lett. B535 (2002) 280 [hep-th/0201096] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  27. [27]
    W. Siegel and S.J. Gates Jr., Superfield Supergravity, Nucl. Phys. B147 (1979) 77 [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  28. [28]
    P. Breitenlohner, On the Auxiliary Fields of Supergravity, Phys. Lett. B80 (1979) 217 [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    F. Farakos, A. Kehagias and K. Koutrolikos, Linearized Non-Minimal Higher Curvature Supergravity, Nucl. Phys. B894 (2015) 569 [1501.07562] [INSPIRE].
  30. [30]
    S.J. Gates Jr. and K. Koutrolikos, On 4D, \( \mathcal{N}=1 \) massless gauge superfields of arbitrary superhelicity, JHEP 06 (2014) 098 [1310.7385] [INSPIRE].
  31. [31]
    S.J. Gates Jr. and K. Koutrolikos, On 4D, \( \mathcal{N}=1 \) massless gauge superfields of higher superspin: half-odd-integer case, 1310.7386 [INSPIRE].

Copyright information

© The Author(s) 2017

Authors and Affiliations

  1. 1.Institute for Theoretical Physics and AstrophysicsMasaryk UniversityBrnoCzech Republic

Personalised recommendations