Advertisement

Next-to-next-to-leading order N -jettiness soft function for one massive colored particle production at hadron colliders

  • Hai Tao Li
  • Jian WangEmail author
Open Access
Regular Article - Theoretical Physics

Abstract

The N -jettiness subtraction has proven to be an efficient method to perform differential QCD next-to-next-to-leading order (NNLO) calculations in the last few years. One important ingredient of this method is the NNLO soft function. We calculate this soft function for one massive colored particle production at hadron colliders. We select the color octet and color triplet cases to present the final results. We also discuss its application in NLO and NNLO differential calculations.

Keywords

Perturbative QCD Resummation 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    C.W. Bauer, S. Fleming and M.E. Luke, Summing Sudakov logarithms in BX() in effective field theory, Phys. Rev. D 63 (2000) 014006 [hep-ph/0005275] [INSPIRE].
  2. [2]
    C.W. Bauer, S. Fleming, D. Pirjol and I.W. Stewart, An effective field theory for collinear and soft gluons: heavy to light decays, Phys. Rev. D 63 (2001) 114020 [hep-ph/0011336] [INSPIRE].
  3. [3]
    C.W. Bauer and I.W. Stewart, Invariant operators in collinear effective theory, Phys. Lett. B 516 (2001) 134 [hep-ph/0107001] [INSPIRE].
  4. [4]
    C.W. Bauer, D. Pirjol and I.W. Stewart, Soft collinear factorization in effective field theory, Phys. Rev. D 65 (2002) 054022 [hep-ph/0109045] [INSPIRE].
  5. [5]
    M. Beneke, A.P. Chapovsky, M. Diehl and T. Feldmann, Soft collinear effective theory and heavy to light currents beyond leading power, Nucl. Phys. B 643 (2002) 431 [hep-ph/0206152] [INSPIRE].
  6. [6]
    T. Becher, A. Broggio and A. Ferroglia, Introduction to soft-collinear effective theory, Springer, Germany (2015).Google Scholar
  7. [7]
    I.W. Stewart, F.J. Tackmann and W.J. Waalewijn, N -jettiness: an inclusive event shape to veto jets, Phys. Rev. Lett. 105 (2010) 092002 [arXiv:1004.2489] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    I.W. Stewart, F.J. Tackmann and W.J. Waalewijn, Factorization at the LHC: from PDFs to initial state jets, Phys. Rev. D 81 (2010) 094035 [arXiv:0910.0467] [INSPIRE].ADSGoogle Scholar
  9. [9]
    I.W. Stewart, F.J. Tackmann and W.J. Waalewijn, The quark beam function at NNLL, JHEP 09 (2010) 005 [arXiv:1002.2213] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  10. [10]
    C.F. Berger, C. Marcantonini, I.W. Stewart, F.J. Tackmann and W.J. Waalewijn, Higgs production with a central jet veto at NNLL+NNLO, JHEP 04 (2011) 092 [arXiv:1012.4480] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    J.R. Gaunt, M. Stahlhofen and F.J. Tackmann, The quark beam function at two loops, JHEP 04 (2014) 113 [arXiv:1401.5478] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    J. Gaunt, M. Stahlhofen and F.J. Tackmann, The gluon beam function at two loops, JHEP 08 (2014) 020 [arXiv:1405.1044] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    T. Becher and M. Neubert, Toward a NNLO calculation of the \( \overline{B}\to {X}_s\gamma \) decay rate with a cut on photon energy. II. Two-loop result for the jet function, Phys. Lett. B 637 (2006) 251 [hep-ph/0603140] [INSPIRE].
  14. [14]
    T. Becher and G. Bell, The gluon jet function at two-loop order, Phys. Lett. B 695 (2011) 252 [arXiv:1008.1936] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    T.T. Jouttenus, I.W. Stewart, F.J. Tackmann and W.J. Waalewijn, The soft function for exclusive N -jet production at hadron colliders, Phys. Rev. D 83 (2011) 114030 [arXiv:1102.4344] [INSPIRE].ADSGoogle Scholar
  16. [16]
    R. Kelley, M.D. Schwartz, R.M. Schabinger and H.X. Zhu, The two-loop hemisphere soft function, Phys. Rev. D 84 (2011) 045022 [arXiv:1105.3676] [INSPIRE].ADSGoogle Scholar
  17. [17]
    P.F. Monni, T. Gehrmann and G. Luisoni, Two-loop soft corrections and resummation of the thrust distribution in the dijet region, JHEP 08 (2011) 010 [arXiv:1105.4560] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  18. [18]
    R. Boughezal, X. Liu and F. Petriello, N -jettiness soft function at next-to-next-to-leading order, Phys. Rev. D 91 (2015) 094035 [arXiv:1504.02540] [INSPIRE].ADSGoogle Scholar
  19. [19]
    D. Kang, O.Z. Labun and C. Lee, Equality of hemisphere soft functions for e + e , DIS and pp collisions at \( \mathcal{O}\left({\alpha}_s^2\right) \), Phys. Lett. B 748 (2015) 45 [arXiv:1504.04006] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  20. [20]
    I.W. Stewart, F.J. Tackmann and W.J. Waalewijn, The beam thrust cross section for Drell-Yan at NNLL order, Phys. Rev. Lett. 106 (2011) 032001 [arXiv:1005.4060] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    Z.-B. Kang, S. Mantry and J.-W. Qiu, N -jettiness as a probe of nuclear dynamics, Phys. Rev. D 86 (2012) 114011 [arXiv:1204.5469] [INSPIRE].ADSGoogle Scholar
  22. [22]
    T.T. Jouttenus, I.W. Stewart, F.J. Tackmann and W.J. Waalewijn, Jet mass spectra in Higgs boson plus one jet at next-to-next-to-leading logarithmic order, Phys. Rev. D 88 (2013) 054031 [arXiv:1302.0846] [INSPIRE].ADSGoogle Scholar
  23. [23]
    D. Kang, C. Lee and I.W. Stewart, Using 1-jettiness to measure 2 jets in DIS 3 ways, Phys. Rev. D 88 (2013) 054004 [arXiv:1303.6952] [INSPIRE].ADSGoogle Scholar
  24. [24]
    Z.-B. Kang, X. Liu and S. Mantry, 1-jettiness DIS event shape: NNLL+NLO results, Phys. Rev. D 90 (2014) 014041 [arXiv:1312.0301] [INSPIRE].ADSGoogle Scholar
  25. [25]
    D. Kang, C. Lee, and I.W. Stewart, DIS event shape at N3LL, PoS(DIS2015)142.
  26. [26]
    S. Alioli, C.W. Bauer, C. Berggren, F.J. Tackmann and J.R. Walsh, Drell-Yan production at NNLL+NNLO matched to parton showers, Phys. Rev. D 92 (2015) 094020 [arXiv:1508.01475] [INSPIRE].ADSGoogle Scholar
  27. [27]
    R. Boughezal, C. Focke, X. Liu and F. Petriello, W -boson production in association with a jet at next-to-next-to-leading order in perturbative QCD, Phys. Rev. Lett. 115 (2015) 062002 [arXiv:1504.02131] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    R. Boughezal, C. Focke, W. Giele, X. Liu and F. Petriello, Higgs boson production in association with a jet at NNLO using jettiness subtraction, Phys. Lett. B 748 (2015) 5 [arXiv:1505.03893] [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    J. Gaunt, M. Stahlhofen, F.J. Tackmann and J.R. Walsh, N -jettiness subtractions for NNLO QCD calculations, JHEP 09 (2015) 058 [arXiv:1505.04794] [INSPIRE].CrossRefGoogle Scholar
  30. [30]
    R. Boughezal et al., Z-boson production in association with a jet at next-to-next-to-leading order in perturbative QCD, Phys. Rev. Lett. 116 (2016) 152001 [arXiv:1512.01291] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    E.L. Berger, J. Gao, C.S. Li, Z.L. Liu and H.X. Zhu, Charm-quark production in deep-inelastic neutrino scattering at next-to-next-to-leading order in QCD, Phys. Rev. Lett. 116 (2016) 212002 [arXiv:1601.05430] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    G. Abelof, R. Boughezal, X. Liu and F. Petriello, Single-inclusive jet production in electron-nucleon collisions through next-to-next-to-leading order in perturbative QCD, Phys. Lett. B 763 (2016) 52 [arXiv:1607.04921] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    H.X. Zhu, C.S. Li, H.T. Li, D.Y. Shao and L.L. Yang, Transverse-momentum resummation for top-quark pairs at hadron colliders, Phys. Rev. Lett. 110 (2013) 082001 [arXiv:1208.5774] [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    H.T. Li, C.S. Li, D.Y. Shao, L.L. Yang and H.X. Zhu, Top quark pair production at small transverse momentum in hadronic collisions, Phys. Rev. D 88 (2013) 074004 [arXiv:1307.2464] [INSPIRE].ADSGoogle Scholar
  35. [35]
    S. Catani, M. Grazzini and A. Torre, Transverse-momentum resummation for heavy-quark hadroproduction, Nucl. Phys. B 890 (2014) 518 [arXiv:1408.4564] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  36. [36]
    J. Gao, C.S. Li and H.X. Zhu, Top quark decay at next-to-next-to leading order in QCD, Phys. Rev. Lett. 110 (2013) 042001 [arXiv:1210.2808] [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    E.L. Berger, J. Gao, C.P. Yuan and H.X. Zhu, NNLO QCD corrections to t-channel single top-quark production and decay, Phys. Rev. D 94 (2016) 071501 [arXiv:1606.08463] [INSPIRE].ADSGoogle Scholar
  38. [38]
    A. Idilbi, C. Kim and T. Mehen, Factorization and resummation for single color-octet scalar production at the LHC, Phys. Rev. D 79 (2009) 114016 [arXiv:0903.3668] [INSPIRE].ADSGoogle Scholar
  39. [39]
    M. Beneke, P. Falgari and C. Schwinn, Soft radiation in heavy-particle pair production: all-order colour structure and two-loop anomalous dimension, Nucl. Phys. B 828 (2010) 69 [arXiv:0907.1443] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  40. [40]
    M. Czakon and P. Fiedler, The soft function for color octet production at threshold, Nucl. Phys. B 879 (2014) 236 [arXiv:1311.2541] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  41. [41]
    J. Chay, C. Kim, Y.G. Kim and J.-P. Lee, Soft Wilson lines in soft-collinear effective theory, Phys. Rev. D 71 (2005) 056001 [hep-ph/0412110] [INSPIRE].
  42. [42]
    G.P. Korchemsky and A.V. Radyushkin, Infrared factorization, Wilson lines and the heavy quark limit, Phys. Lett. B 279 (1992) 359 [hep-ph/9203222] [INSPIRE].
  43. [43]
    T. Becher and M. Neubert, Infrared singularities of scattering amplitudes in perturbative QCD, Phys. Rev. Lett. 102 (2009) 162001 [arXiv:0901.0722] [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    T. Becher and M. Neubert, On the structure of infrared singularities of gauge-theory amplitudes, JHEP 06 (2009) 081 [Erratum ibid. 11 (2013) 024] [arXiv:0903.1126] [INSPIRE].
  45. [45]
    S. Catani and M.H. Seymour, The dipole formalism for the calculation of QCD jet cross-sections at next-to-leading order, Phys. Lett. B 378 (1996) 287 [hep-ph/9602277] [INSPIRE].
  46. [46]
    S. Catani and M.H. Seymour, A general algorithm for calculating jet cross-sections in NLO QCD, Nucl. Phys. B 485 (1997) 291 [Erratum ibid. B 510 (1998) 503] [hep-ph/9605323] [INSPIRE].
  47. [47]
    A. Ferroglia, M. Neubert, B.D. Pecjak and L.L. Yang, Two-loop divergences of scattering amplitudes with massive partons, Phys. Rev. Lett. 103 (2009) 201601 [arXiv:0907.4791] [INSPIRE].ADSCrossRefGoogle Scholar
  48. [48]
    A. Ferroglia, M. Neubert, B.D. Pecjak and L.L. Yang, Two-loop divergences of massive scattering amplitudes in non-abelian gauge theories, JHEP 11 (2009) 062 [arXiv:0908.3676] [INSPIRE].ADSCrossRefGoogle Scholar
  49. [49]
    Z. Bern, V. Del Duca and C.R. Schmidt, The Infrared behavior of one loop gluon amplitudes at next-to-next-to-leading order, Phys. Lett. B 445 (1998) 168 [hep-ph/9810409] [INSPIRE].
  50. [50]
    Z. Bern, V. Del Duca, W.B. Kilgore and C.R. Schmidt, The infrared behavior of one loop QCD amplitudes at next-to-next-to leading order, Phys. Rev. D 60 (1999) 116001 [hep-ph/9903516] [INSPIRE].
  51. [51]
    S. Catani and M. Grazzini, The soft gluon current at one loop order, Nucl. Phys. B 591 (2000) 435 [hep-ph/0007142] [INSPIRE].
  52. [52]
    I. Bierenbaum, M. Czakon and A. Mitov, The singular behavior of one-loop massive QCD amplitudes with one external soft gluon, Nucl. Phys. B 856 (2012) 228 [arXiv:1107.4384] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  53. [53]
    T. Huber and D. Maître, HypExp: a Mathematica package for expanding hypergeometric functions around integer-valued parameters, Comput. Phys. Commun. 175 (2006) 122 [hep-ph/0507094] [INSPIRE].
  54. [54]
    T. Huber and D. Maître, HypExp 2, expanding hypergeometric functions about half-integer parameters, Comput. Phys. Commun. 178 (2008) 755 [arXiv:0708.2443] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  55. [55]
    S. Catani and M. Grazzini, Infrared factorization of tree level QCD amplitudes at the next-to-next-to-leading order and beyond, Nucl. Phys. B 570 (2000) 287 [hep-ph/9908523] [INSPIRE].
  56. [56]
    M. Czakon, Double-real radiation in hadronic top quark pair production as a proof of a certain concept, Nucl. Phys. B 849 (2011) 250 [arXiv:1101.0642] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  57. [57]
    G. Bell, R. Rahn and J. Talbert, Automated calculation of dijet soft functions in soft-collinear effective theory, in the proceedings of the 12th International Symposium on Radiative Corrections (RADCOR 2015) and LoopFest XIV, June 15-19, Los Angeles, U.S.A. (2015), arXiv:1512.06100 [INSPIRE].
  58. [58]
    M. Czakon, Automatized analytic continuation of Mellin-Barnes integrals, Comput. Phys. Commun. 175 (2006) 559 [hep-ph/0511200] [INSPIRE].
  59. [59]
    A.V. Smirnov and V.A. Smirnov, On the resolution of singularities of multiple Mellin-Barnes integrals, Eur. Phys. J. C 62 (2009) 445 [arXiv:0901.0386] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  60. [60]
    J. Carter and G. Heinrich, SecDec: a general program for sector decomposition, Comput. Phys. Commun. 182 (2011) 1566 [arXiv:1011.5493] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  61. [61]
    S. Borowka, G. Heinrich, S.P. Jones, M. Kerner, J. Schlenk and T. Zirke, SecDec-3.0: numerical evaluation of multi-scale integrals beyond one loop, Comput. Phys. Commun. 196 (2015) 470 [arXiv:1502.06595] [INSPIRE].
  62. [62]
    T. Binoth and G. Heinrich, An automatized algorithm to compute infrared divergent multiloop integrals, Nucl. Phys. B 585 (2000) 741 [hep-ph/0004013] [INSPIRE].
  63. [63]
    R.S. Chivukula, A. Farzinnia, E.H. Simmons and R. Foadi, Production of massive color-octet vector bosons at next-to-leading order, Phys. Rev. D 85 (2012) 054005 [arXiv:1111.7261] [INSPIRE].ADSGoogle Scholar
  64. [64]
    J. Alwall et al., The automated computation of tree-level and next-to-leading order differential cross sections and their matching to parton shower simulations, JHEP 07 (2014) 079 [arXiv:1405.0301] [INSPIRE].ADSCrossRefGoogle Scholar
  65. [65]
    S. Dulat et al., New parton distribution functions from a global analysis of quantum chromodynamics, Phys. Rev. D 93 (2016) 033006 [arXiv:1506.07443] [INSPIRE].ADSGoogle Scholar
  66. [66]
    A. Alloul, N.D. Christensen, C. Degrande, C. Duhr and B. Fuks, FeynRules 2.0 — A complete toolbox for tree-level phenomenology, Comput. Phys. Commun. 185 (2014) 2250 [arXiv:1310.1921] [INSPIRE].

Copyright information

© The Author(s) 2017

Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.ARC Centre of Excellence for Particle Physics at the Terascale, School of Physics and AstronomyMonash UniversityClaytonAustralia
  2. 2.PRISMA Cluster of Excellence & Mainz Institute for Theoretical PhysicsJohannes Gutenberg UniversityMainzGermany
  3. 3.Physik Department T31Technische Universität MünchenGarchingGermany

Personalised recommendations