Skip to main content
Springer Nature Link
Account
Menu
Find a journal Publish with us Track your research
Search
Cart
  1. Home
  2. Journal of High Energy Physics
  3. Article

Sharpening the weak gravity conjecture with dimensional reduction

  • Regular Article - Theoretical Physics
  • Open access
  • Published: 22 February 2016
  • Volume 2016, article number 140, (2016)
  • Cite this article
Download PDF

You have full access to this open access article

Journal of High Energy Physics Aims and scope Submit manuscript
Sharpening the weak gravity conjecture with dimensional reduction
Download PDF
  • Ben Heidenreich1,
  • Matthew Reece1 &
  • Tom Rudelius1 
  • 602 Accesses

  • 2 Altmetric

  • Explore all metrics

A preprint version of the article is available at arXiv.

Abstract

We investigate the behavior of the Weak Gravity Conjecture (WGC) under toroidal compactification and RG flows, finding evidence that WGC bounds for single photons become weaker in the infrared. By contrast, we find that a photon satisfying the WGC will not necessarily satisfy it after toroidal compactification when black holes charged under the Kaluza-Klein photons are considered. Doing so either requires an infinite number of states of different charges to satisfy the WGC in the original theory or a restriction on allowed compactification radii. These subtleties suggest that if the Weak Gravity Conjecture is true, we must seek a stronger form of the conjecture that is robust under compactification. We propose a “Lattice Weak Gravity Conjecture” that meets this requirement: a superextremal particle should exist for every charge in the charge lattice. The perturbative heterotic string satisfies this conjecture. We also use compactification to explore the extent to which the WGC applies to axions. We argue that gravitational instanton solutions in theories of axions coupled to dilaton-like fields are analogous to extremal black holes, motivating a WGC for axions. This is further supported by a match between the instanton action and that of wrapped black branes in a higher-dimensional UV completion.

Article PDF

Download to read the full article text

Similar content being viewed by others

Probing the string winding sector

Article Open access 17 March 2017

Effective theories as truncated trans-series and scale separated compactifications

Article Open access 26 November 2020

PQ axiverse

Article Open access 15 June 2023
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

References

  1. C. Vafa, The string landscape and the swampland, hep-th/0509212 [INSPIRE].

  2. N. Arkani-Hamed, L. Motl, A. Nicolis and C. Vafa, The string landscape, black holes and gravity as the weakest force, JHEP 06 (2007) 060 [hep-th/0601001] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  3. H. Ooguri and C. Vafa, On the geometry of the string landscape and the swampland, Nucl. Phys. B 766 (2007) 21 [hep-th/0605264] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  4. T. Rudelius, On the possibility of large axion moduli spaces, JCAP 04 (2015) 049 [arXiv:1409.5793] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  5. T.C. Bachlechner, C. Long and L. McAllister, Planckian axions in string theory, JHEP 12 (2015) 042 [arXiv:1412.1093] [INSPIRE].

    Article  ADS  Google Scholar 

  6. A. de la Fuente, P. Saraswat and R. Sundrum, Natural inflation and quantum gravity, Phys. Rev. Lett. 114 (2015) 151303 [arXiv:1412.3457] [INSPIRE].

    Article  ADS  Google Scholar 

  7. T. Rudelius, Constraints on axion inflation from the weak gravity conjecture, JCAP 09 (2015) 020 [arXiv:1503.00795] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  8. M. Montero, A.M. Uranga and I. Valenzuela, Transplanckian axions!?, JHEP 08 (2015) 032 [arXiv:1503.03886] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  9. J. Brown, W. Cottrell, G. Shiu and P. Soler, Fencing in the swampland: quantum gravity constraints on large field inflation, JHEP 10 (2015) 023 [arXiv:1503.04783] [INSPIRE].

    Article  ADS  Google Scholar 

  10. T.C. Bachlechner, C. Long and L. McAllister, Planckian axions and the weak gravity conjecture, JHEP 01 (2016) 091 [arXiv:1503.07853] [INSPIRE].

    Article  ADS  Google Scholar 

  11. A. Hebecker, P. Mangat, F. Rompineve and L.T. Witkowski, Winding out of the swamp: evading the weak gravity conjecture with F-term winding inflation?, Phys. Lett. B 748 (2015) 455 [arXiv:1503.07912] [INSPIRE].

    Article  ADS  Google Scholar 

  12. J. Brown, W. Cottrell, G. Shiu and P. Soler, On axionic field ranges, loopholes and the weak gravity conjecture, arXiv:1504.00659 [INSPIRE].

  13. D. Junghans, Large-field inflation with multiple axions and the weak gravity conjecture, arXiv:1504.03566 [INSPIRE].

  14. B. Heidenreich, M. Reece and T. Rudelius, Weak gravity strongly constrains large-field axion inflation, JHEP 12 (2015) 108 [arXiv:1506.03447] [INSPIRE].

    Article  ADS  Google Scholar 

  15. E. Palti, On natural inflation and moduli stabilisation in string theory, JHEP 10 (2015) 188 [arXiv:1508.00009] [INSPIRE].

    Article  ADS  Google Scholar 

  16. T. Banks and L.J. Dixon, Constraints on string vacua with space-time supersymmetry, Nucl. Phys. B 307 (1988) 93 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  17. R. Kallosh, A.D. Linde, D.A. Linde and L. Susskind, Gravity and global symmetries, Phys. Rev. D 52 (1995) 912 [hep-th/9502069] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  18. L. Susskind, Trouble for remnants, hep-th/9501106 [INSPIRE].

  19. T. Banks and N. Seiberg, Symmetries and strings in field theory and gravity, Phys. Rev. D 83 (2011) 084019 [arXiv:1011.5120] [INSPIRE].

    ADS  Google Scholar 

  20. C. Cheung and G.N. Remmen, Naturalness and the weak gravity conjecture, Phys. Rev. Lett. 113 (2014) 051601 [arXiv:1402.2287] [INSPIRE].

    Article  ADS  Google Scholar 

  21. B. Heidenreich, Notes on the weak gravity conjecture, unpublished (2013).

  22. J. Polchinski, Monopoles, duality and string theory, Int. J. Mod. Phys. A 19S1 (2004) 145 [hep-th/0304042] [INSPIRE].

    Article  MathSciNet  Google Scholar 

  23. Y. Kats, L. Motl and M. Padi, Higher-order corrections to mass-charge relation of extremal black holes, JHEP 12 (2007) 068 [hep-th/0606100] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  24. G.W. Gibbons, Antigravitating black hole solitons with scalar hair in N = 4 supergravity, Nucl. Phys. B 207 (1982) 337 [INSPIRE].

    Article  ADS  Google Scholar 

  25. R.C. Myers and M.J. Perry, Black holes in higher dimensional space-times, Annals Phys. 172 (1986) 304 [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. G.W. Gibbons and K.-i. Maeda, Black holes and membranes in higher dimensional theories with dilaton fields, Nucl. Phys. B 298 (1988) 741 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  27. D. Garfinkle, G.T. Horowitz and A. Strominger, Charged black holes in string theory, Phys. Rev. D 43 (1991) 3140 [Erratum ibid. D 45 (1992) 3888] [INSPIRE].

  28. G.T. Horowitz and A. Strominger, Black strings and p-branes, Nucl. Phys. B 360 (1991) 197 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  29. J.X. Lu, ADM masses for black strings and p-branes, Phys. Lett. B 313 (1993) 29 [hep-th/9304159] [INSPIRE].

    Article  ADS  Google Scholar 

  30. M.J. Duff and J.X. Lu, Black and super p-branes in diverse dimensions, Nucl. Phys. B 416 (1994) 301 [hep-th/9306052] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  31. M.J. Duff, H. Lü and C.N. Pope, The black branes of M-theory, Phys. Lett. B 382 (1996) 73 [hep-th/9604052] [INSPIRE].

    Article  ADS  Google Scholar 

  32. R.d. Sorkin, Kaluza-Klein monopole, Phys. Rev. Lett. 51 (1983) 87 [INSPIRE].

  33. D.J. Gross and M.J. Perry, Magnetic monopoles in Kaluza-Klein theories, Nucl. Phys. B 226 (1983) 29 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  34. G.T. Horowitz and K. Maeda, Inhomogeneous near extremal black branes, Phys. Rev. D 65 (2002) 104028 [hep-th/0201241] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  35. J. Polchinski, String theory. Volume 2: superstring theory and beyond, Cambridge University Press, Cambridge U.K. (2007).

  36. D.N. Page, Classical stability of round and squashed seven spheres in eleven-dimensional supergravity, Phys. Rev. D 28 (1983) 2976 [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  37. D. Marolf, Chern-Simons terms and the three notions of charge, in the proceedings of the International Conference dedicated to the memory of Professor Efim Fradkin, June 5-10, Moscow, Russia (2000), hep-th/0006117 [INSPIRE].

  38. D.J. Gross, J.A. Harvey, E.J. Martinec and R. Rohm, Heterotic string theory. 1. The free heterotic string, Nucl. Phys. B 256 (1985) 253 [INSPIRE].

  39. D.J. Gross, J.A. Harvey, E.J. Martinec and R. Rohm, Heterotic string theory. 2. The interacting heterotic string, Nucl. Phys. B 267 (1986) 75 [INSPIRE].

  40. X.-G. Wen and E. Witten, Electric and magnetic charges in superstring models, Nucl. Phys. B 261 (1985) 651 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  41. N. Arkani-Hamed, H.-C. Cheng, P. Creminelli and L. Randall, Extra natural inflation, Phys. Rev. Lett. 90 (2003) 221302 [hep-th/0301218] [INSPIRE].

    Article  ADS  Google Scholar 

  42. Y. Hosotani, Dynamical mass generation by compact extra dimensions, Phys. Lett. B 126 (1983) 309 [INSPIRE].

    Article  ADS  Google Scholar 

  43. H.-C. Cheng, K.T. Matchev and M. Schmaltz, Radiative corrections to Kaluza-Klein masses, Phys. Rev. D 66 (2002) 036005 [hep-ph/0204342] [INSPIRE].

  44. N. Arkani-Hamed, S. Dubovsky, A. Nicolis and G. Villadoro, Quantum horizons of the standard model landscape, JHEP 06 (2007) 078 [hep-th/0703067] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  45. S.B. Giddings and A. Strominger, Axion induced topology change in quantum gravity and string theory, Nucl. Phys. B 306 (1988) 890 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  46. K.-M. Lee, Wormholes and Goldstone bosons, Phys. Rev. Lett. 61 (1988) 263 [INSPIRE].

    Article  ADS  Google Scholar 

  47. S.B. Giddings and A. Strominger, String wormholes, Phys. Lett. B 230 (1989) 46 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  48. S.R. Coleman and K.-M. Lee, Wormholes made without massless matter fields, Nucl. Phys. B 329 (1990) 387 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  49. L.F. Abbott and M.B. Wise, Wormholes and global symmetries, Nucl. Phys. B 325 (1989) 687 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  50. N. Arkani-Hamed, J. Orgera and J. Polchinski, Euclidean wormholes in string theory, JHEP 12 (2007) 018 [arXiv:0705.2768] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  51. M. Gutperle and W. Sabra, Instantons and wormholes in Minkowski and (A)dS spaces, Nucl. Phys. B 647 (2002) 344 [hep-th/0206153] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  52. E. Bergshoeff, A. Collinucci, U. Gran, D. Roest and S. Vandoren, Non-extremal D-instantons, JHEP 10 (2004) 031 [hep-th/0406038] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  53. E. Bergshoeff, A. Collinucci, U. Gran, D. Roest and S. Vandoren, Non-extremal instantons and wormholes in string theory, Fortsch. Phys. 53 (2005) 990 [hep-th/0412183] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  54. T. Banks, M. Johnson and A. Shomer, A note on gauge theories coupled to gravity, JHEP 09 (2006) 049 [hep-th/0606277] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  55. C. Cheung and G.N. Remmen, Infrared consistency and the weak gravity conjecture, JHEP 12 (2014) 087 [arXiv:1407.7865] [INSPIRE].

    Article  ADS  Google Scholar 

  56. B. Bellazzini, C. Cheung and G.N. Remmen, Quantum gravity constraints from unitarity and analyticity, arXiv:1509.00851 [INSPIRE].

  57. Y. Nakayama and Y. Nomura, Weak gravity conjecture in the AdS/CFT correspondence, Phys. Rev. D 92 (2015) 126006 [arXiv:1509.01647] [INSPIRE].

    ADS  Google Scholar 

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Authors and Affiliations

  1. Department of Physics, Harvard University, Cambridge, MA, 02138, U.S.A.

    Ben Heidenreich, Matthew Reece & Tom Rudelius

Authors
  1. Ben Heidenreich
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Matthew Reece
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Tom Rudelius
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Matthew Reece.

Additional information

ArXiv EPrint: 1509.06374

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Heidenreich, B., Reece, M. & Rudelius, T. Sharpening the weak gravity conjecture with dimensional reduction. J. High Energ. Phys. 2016, 140 (2016). https://doi.org/10.1007/JHEP02(2016)140

Download citation

  • Received: 16 October 2015

  • Revised: 22 December 2015

  • Accepted: 08 February 2016

  • Published: 22 February 2016

  • DOI: https://doi.org/10.1007/JHEP02(2016)140

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Superstrings and Heterotic Strings
  • Models of Quantum Gravity
  • Black Holes
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us
  • Track your research

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Journal finder
  • Publish your research
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our imprints

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support
  • Cancel contracts here

Not affiliated

Springer Nature

© 2025 Springer Nature