Skip to main content

Solid holography and massive gravity

A preprint version of the article is available at arXiv.

Abstract

Momentum dissipation is an important ingredient in condensed matter physics that requires a translation breaking sector. In the bottom-up gauge/gravity duality, this implies that the gravity dual is massive. We start here a systematic analysis of holographic massive gravity (HMG) theories, which admit field theory dual interpretations and which, therefore, might store interesting condensed matter applications. We show that there are many phases of HMG that are fully consistent effective field theories and which have been left overlooked in the literature. The most important distinction between the different HMG phases is that they can be clearly separated into solids and fluids. This can be done both at the level of the unbroken spacetime symmetries as well as concerning the elastic properties of the dual materials. We extract the modulus of rigidity of the solid HMG black brane solutions and show how it relates to the graviton mass term. We also consider the implications of the different HMGs on the electric response. We show that the types of response that can be consistently described within this framework is much wider than what is captured by the narrow class of models mostly considered so far.

References

  1. D. Vegh, Holography without translational symmetry, arXiv:1301.0537 [INSPIRE].

  2. M. Blake and D. Tong, Universal Resistivity from Holographic Massive Gravity, Phys. Rev. D 88 (2013) 106004 [arXiv:1308.4970] [INSPIRE].

    ADS  Google Scholar 

  3. M. Blake, D. Tong and D. Vegh, Holographic Lattices Give the Graviton an Effective Mass, Phys. Rev. Lett. 112 (2014) 071602 [arXiv:1310.3832] [INSPIRE].

    Article  ADS  Google Scholar 

  4. R.A. Davison, Momentum relaxation in holographic massive gravity, Phys. Rev. D 88 (2013) 086003 [arXiv:1306.5792] [INSPIRE].

    ADS  Google Scholar 

  5. V.A. Rubakov, Lorentz-violating graviton masses: Getting around ghosts, low strong coupling scale and VDVZ discontinuity, hep-th/0407104 [INSPIRE].

  6. S.L. Dubovsky, Phases of massive gravity, JHEP 10 (2004) 076 [hep-th/0409124] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  7. D. Blas and S. Sibiryakov, Completing Lorentz violating massive gravity at high energies, Zh. Eksp. Teor. Fiz. 147 (2015) 578 [arXiv:1410.2408] [INSPIRE].

    Google Scholar 

  8. C. de Rham, Massive Gravity, Living Rev. Rel. 17 (2014) 7 [arXiv:1401.4173] [INSPIRE].

    Google Scholar 

  9. J.M. Maldacena, The Large-N limit of superconformal field theories and supergravity, Int. J. Theor. Phys. 38 (1999) 1113 [hep-th/9711200] [INSPIRE].

    Article  MathSciNet  MATH  Google Scholar 

  10. C. de Rham, G. Gabadadze and A.J. Tolley, Resummation of Massive Gravity, Phys. Rev. Lett. 106 (2011) 231101 [arXiv:1011.1232] [INSPIRE].

    Article  ADS  Google Scholar 

  11. M. Baggioli and O. Pujolàs, Electron-Phonon Interactions, Metal-Insulator Transitions and Holographic Massive Gravity, Phys. Rev. Lett. 114 (2015) 251602 [arXiv:1411.1003] [INSPIRE].

    Article  ADS  Google Scholar 

  12. L. Alberte and A. Khmelnitsky, Stability of Massive Gravity Solutions for Holographic Conductivity, Phys. Rev. D 91 (2015) 046006 [arXiv:1411.3027] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  13. T. Andrade and B. Withers, A simple holographic model of momentum relaxation, JHEP 05 (2014) 101 [arXiv:1311.5157] [INSPIRE].

    Article  ADS  Google Scholar 

  14. M. Taylor and W. Woodhead, Inhomogeneity simplified, Eur. Phys. J. C 74 (2014) 3176 [arXiv:1406.4870] [INSPIRE].

    Article  ADS  Google Scholar 

  15. H. Leutwyler, Nonrelativistic effective Lagrangians, Phys. Rev. D 49 (1994) 3033 [hep-ph/9311264] [INSPIRE].

    ADS  Google Scholar 

  16. H. Leutwyler, Phonons as goldstone bosons, Helv. Phys. Acta 70 (1997) 275 [hep-ph/9609466] [INSPIRE].

    MATH  Google Scholar 

  17. A. Nicolis, R. Penco, F. Piazza and R. Rattazzi, Zoology of condensed matter: Framids, ordinary stuff, extra-ordinary stuff, JHEP 06 (2015) 155 [arXiv:1501.03845] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  18. A. Nicolis, R. Penco and R.A. Rosen, Relativistic Fluids, Superfluids, Solids and Supersolids from a Coset Construction, Phys. Rev. D 89 (2014) 045002 [arXiv:1307.0517] [INSPIRE].

    ADS  Google Scholar 

  19. S. Dubovsky, L. Hui, A. Nicolis and D.T. Son, Effective field theory for hydrodynamics: thermodynamics and the derivative expansion, Phys. Rev. D 85 (2012) 085029 [arXiv:1107.0731] [INSPIRE].

    ADS  Google Scholar 

  20. D.T. Son, Effective Lagrangian and topological interactions in supersolids, Phys. Rev. Lett. 94 (2005) 175301 [cond-mat/0501658] [INSPIRE].

    Article  ADS  Google Scholar 

  21. S. Endlich, A. Nicolis and J. Wang, Solid Inflation, JCAP 10 (2013) 011 [arXiv:1210.0569] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  22. C. Lin and L.Z. Labun, Effective Field Theory of Broken Spatial Diffeomorphisms, arXiv:1501.07160 [INSPIRE].

  23. S.A. Hartnoll, Lectures on holographic methods for condensed matter physics, Class. Quant. Grav. 26 (2009) 224002 [arXiv:0903.3246] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  24. S.A. Hartnoll and C.P. Herzog, Impure AdS/CFT correspondence, Phys. Rev. D 77 (2008) 106009 [arXiv:0801.1693] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  25. N. Iqbal and H. Liu, Universality of the hydrodynamic limit in AdS/CFT and the membrane paradigm, Phys. Rev. D 79 (2009) 025023 [arXiv:0809.3808] [INSPIRE].

    ADS  Google Scholar 

  26. S.A. Hartnoll, J. Polchinski, E. Silverstein and D. Tong, Towards strange metallic holography, JHEP 04 (2010) 120 [arXiv:0912.1061] [INSPIRE].

    Article  ADS  Google Scholar 

  27. R.A. Davison, K. Schalm and J. Zaanen, Holographic duality and the resistivity of strange metals, Phys. Rev. B 89 (2014) 245116 [arXiv:1311.2451] [INSPIRE].

    Article  ADS  Google Scholar 

  28. S.A. Hartnoll, Theory of universal incoherent metallic transport, Nature Phys. 11 (2015) 54 [arXiv:1405.3651] [INSPIRE].

    Article  ADS  Google Scholar 

  29. A. Donos and J.P. Gauntlett, Novel metals and insulators from holography, JHEP 06 (2014) 007 [arXiv:1401.5077] [INSPIRE].

    Article  ADS  Google Scholar 

  30. A. Donos and J.P. Gauntlett, Thermoelectric DC conductivities from black hole horizons, JHEP 11 (2014) 081 [arXiv:1406.4742] [INSPIRE].

    Article  ADS  Google Scholar 

  31. A. Amoretti, A. Braggio, N. Magnoli and D. Musso, Bounds on charge and heat diffusivities in momentum dissipating holography, JHEP 07 (2015) 102 [arXiv:1411.6631] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  32. S. Grozdanov, A. Lucas, S. Sachdev and K. Schalm, Absence of disorder-driven metal-insulator transitions in simple holographic models, Phys. Rev. Lett. 115 (2015) 221601 [arXiv:1507.00003] [INSPIRE].

    Article  ADS  Google Scholar 

  33. R.A. Davison and B. Goutéraux, Momentum dissipation and effective theories of coherent and incoherent transport, JHEP 01 (2015) 039 [arXiv:1411.1062] [INSPIRE].

    Article  ADS  Google Scholar 

  34. S.A. Hartnoll and J.E. Santos, Disordered horizons: Holography of randomly disordered fixed points, Phys. Rev. Lett. 112 (2014) 231601 [arXiv:1402.0872] [INSPIRE].

    Article  ADS  Google Scholar 

  35. B. Goutéraux, Charge transport in holography with momentum dissipation, JHEP 04 (2014) 181 [arXiv:1401.5436] [INSPIRE].

    Article  ADS  Google Scholar 

  36. S.A. Hartnoll, D.M. Ramirez and J.E. Santos, Thermal conductivity at a disordered quantum critical point, arXiv:1508.04435 [INSPIRE].

  37. A. Lucas, Hydrodynamic transport in strongly coupled disordered quantum field theories, New J. Phys. 17 (2015) 113007 [arXiv:1506.02662] [INSPIRE].

    Article  ADS  Google Scholar 

  38. A. Lucas and S. Sachdev, Conductivity of weakly disordered strange metals: from conformal to hyperscaling-violating regimes, Nucl. Phys. B 892 (2015) 239 [arXiv:1411.3331] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  39. A. Lucas, S. Sachdev and K. Schalm, Scale-invariant hyperscaling-violating holographic theories and the resistivity of strange metals with random-field disorder, Phys. Rev. D 89 (2014) 066018 [arXiv:1401.7993] [INSPIRE].

    ADS  Google Scholar 

  40. D. Arean, L.A. Pando Zayas, I.S. Landea and A. Scardicchio, The Holographic Disorder-Driven Supeconductor-Metal Transition, arXiv:1507.02280 [INSPIRE].

  41. D. Arean, A. Farahi, L.A. Pando Zayas, I.S. Landea and A. Scardicchio, Holographic superconductor with disorder, Phys. Rev. D 89 (2014) 106003 [arXiv:1308.1920] [INSPIRE].

    ADS  Google Scholar 

  42. A. Amoretti and D. Musso, Magneto-transport from momentum dissipating holography, JHEP 09 (2015) 094 [arXiv:1502.02631] [INSPIRE].

    Article  ADS  Google Scholar 

  43. M. Blake, A. Donos and N. Lohitsiri, Magnetothermoelectric Response from Holography, JHEP 08 (2015) 124 [arXiv:1502.03789] [INSPIRE].

    Article  MathSciNet  Google Scholar 

  44. M. Baggioli and M. Goykhman, Under The Dome: Doped holographic superconductors with broken translational symmetry, JHEP 01 (2016) 011 [arXiv:1510.06363] [INSPIRE].

    Article  ADS  Google Scholar 

  45. M. Baggioli and M. Goykhman, Phases of holographic superconductors with broken translational symmetry, JHEP 15 (2015) 35 [arXiv:1504.05561] [INSPIRE].

    Article  MathSciNet  Google Scholar 

  46. M. Baggioli and D.K. Brattan, Drag Phenomena from Holographic Massive Gravity, arXiv:1504.07635 [INSPIRE].

  47. S. de Haro, S.N. Solodukhin and K. Skenderis, Holographic reconstruction of space-time and renormalization in the AdS/CFT correspondence, Commun. Math. Phys. 217 (2001) 595 [hep-th/0002230] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  48. E. Babichev, V. Mukhanov and A. Vikman, k-Essence, superluminal propagation, causality and emergent geometry, JHEP 02 (2008) 101 [arXiv:0708.0561] [INSPIRE].

  49. E. Megias and O. Pujolàs, Naturally light dilatons from nearly marginal deformations, JHEP 08 (2014) 081 [arXiv:1401.4998] [INSPIRE].

    Article  ADS  Google Scholar 

  50. R. Argurio, D. Musso and D. Redigolo, Anatomy of new SUSY breaking holographic RG flows, JHEP 03 (2015) 086 [arXiv:1411.2658] [INSPIRE].

    Article  MathSciNet  Google Scholar 

  51. J.T. Devreese, Fröhlich polaron concept. Lecture course including detailed theoretical derivations, arXiv:1012.4576.

  52. L.D. Landau and E.M. Lifshitz, Theory of Elasticity, Course of Theoretical Physics, vol. 7, Pergamon Press (1970), pg. 1-12.

  53. P.M. Chaikin and T.C. Lubensky, Principles of Condensed Matter Physics, Cambridge University Press (1995).

  54. L. Alberte, M. Baggioli and O. Pujolàs, Viscosity bound violation in holographic solids and the viscoelastic response, arXiv:1601.03384 [INSPIRE].

  55. G. Policastro, D.T. Son and A.O. Starinets, The Shear viscosity of strongly coupled N = 4 supersymmetric Yang-Mills plasma, Phys. Rev. Lett. 87 (2001) 081601 [hep-th/0104066] [INSPIRE].

    Article  ADS  Google Scholar 

  56. S. Endlich, A. Nicolis, R. Rattazzi and J. Wang, The quantum mechanics of perfect fluids, JHEP 04 (2011) 102 [arXiv:1011.6396] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  57. D.G. Boulware and S. Deser, Can gravitation have a finite range?, Phys. Rev. D 6 (1972) 3368 [INSPIRE].

    ADS  Google Scholar 

  58. L. Alberte and A. Khmelnitsky, Reduced massive gravity with two Stückelberg fields, Phys. Rev. D 88 (2013) 064053 [arXiv:1303.4958] [INSPIRE].

    ADS  Google Scholar 

  59. C. Armendariz-Picon and E.A. Lim, Haloes of k-essence, JCAP 08 (2005) 007 [astro-ph/0505207] [INSPIRE].

  60. A. Nicolis, R. Rattazzi and E. Trincherini, The Galileon as a local modification of gravity, Phys. Rev. D 79 (2009) 064036 [arXiv:0811.2197] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  61. M. Fierz and W. Pauli, On relativistic wave equations for particles of arbitrary spin in an electromagnetic field, Proc. Roy. Soc. Lond. A 173 (1939) 211 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  62. L.D. Landau, E.M. Lifshitz, The Classical Theory of Fields, Course of Theoretical Physics, vol. 2, Butterworth-Heinemann (1994), pg. 141-143.

  63. R. Wald, General Relativity, The University of Chichago Press (1984).

  64. N. Arkani-Hamed, H. Georgi and M.D. Schwartz, Effective field theory for massive gravitons and gravity in theory space, Annals Phys. 305 (2003) 96 [hep-th/0210184] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  65. A. Adams, N. Arkani-Hamed, S. Dubovsky, A. Nicolis and R. Rattazzi, Causality, analyticity and an IR obstruction to UV completion, JHEP 10 (2006) 014 [hep-th/0602178] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  66. L. Keltner and A.J. Tolley, UV properties of Galileons: Spectral Densities, arXiv:1502.05706 [INSPIRE].

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Lasma Alberte.

Additional information

ArXiv ePrint: 1510.09089

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Alberte, L., Baggioli, M., Khmelnitsky, A. et al. Solid holography and massive gravity. J. High Energ. Phys. 2016, 114 (2016). https://doi.org/10.1007/JHEP02(2016)114

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP02(2016)114

Keywords

  • Holography and condensed matter physics (AdS/CMT)
  • Spontaneous Symmetry Breaking
  • Effective field theories