Skip to main content

Advertisement

SpringerLink
Magnetic impurity inspired Abelian Higgs vortices
Download PDF
Download PDF
  • Regular Article - Theoretical Physics
  • Open Access
  • Published: 08 February 2016

Magnetic impurity inspired Abelian Higgs vortices

  • Xiaosen Han1 nAff2 &
  • Yisong Yang3,4 

Journal of High Energy Physics volume 2016, Article number: 46 (2016) Cite this article

  • 357 Accesses

  • 11 Citations

  • 1 Altmetric

  • Metrics details

A preprint version of the article is available at arXiv.

Abstract

Inspired by magnetic impurity considerations some broad classes of Abelian Higgs and Chern-Simons-Higgs BPS vortex equations are derived and analyzed.

Download to read the full article text

Working on a manuscript?

Avoid the common mistakes

References

  1. A.A. Abrikosov, On the magnetic properties of superconductors of the second group, Sov. Phys. JETP 5 (1957) 1174 [INSPIRE].

    Google Scholar 

  2. T. Aubin, Nonlinear analysis on manifolds: Monge-Ampère equations, Springer, Berlin and New York (1982).

    Book  MATH  Google Scholar 

  3. R. Auzzi, S. Bolognesi, J. Evslin, K. Konishi and A. Yung, Nonabelian superconductors: vortices and confinement in \( \mathcal{N}=2 \) SQCD, Nucl. Phys. B 673 (2003) 187 [hep-th/0307287] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  4. E.B. Bogomol’nyi, Stability of classical solutions, Sov. J. Nucl. Phys. 24 (1976) 449 [INSPIRE].

    MathSciNet  Google Scholar 

  5. S.B. Bradlow, Vortices in holomorphic line bundles over closed Kähler manifolds, Commun. Math. Phys. 135 (1990) 1 [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. L.A. Caffarelli and Y. Yang, Vortex condensation in the Chern-Simons Higgs model: an existence theorem, Commun. Math. Phys. 168 (1995) 321 [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. M. Eto, T. Fujimori, S.B. Gudnason, K. Konishi, M. Nitta, K. Ohashi and W. Vinci, Constructing non-Abelian vortices with arbitrary gauge groups, Phys. Lett. B 669 (2008) 98 [arXiv:0802.1020] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  8. M. Eto, T. Fujimori, T. Nagashima, M. Nitta, K. Ohashi and N. Sakai, Multiple layer structure of non-Abelian vortex, Phys. Lett. B 678 (2009) 254 [arXiv:0903.1518] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  9. M. Eto, Y. Isozumi, M. Nitta, K. Ohashi and N. Sakai, Solitons in the Higgs phase: the moduli matrix approach, J. Phys. A 39 (2006) R315 [hep-th/0602170] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  10. M. Eto, Y. Isozumi, M. Nitta, K. Ohashi and N. Sakai, Moduli space of non-Abelian vortices, Phys. Rev. Lett. 96 (2006) 161601 [hep-th/0511088] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  11. J. Greensite, An introduction to the confinement problem, Lecture Notes in Physics, volume 821, Springer-Verlag, Berlin and New York (2011).

  12. S.B. Gudnason, Y. Jiang and K. Konishi, Non-Abelian vortex dynamics: effective world-sheet action, JHEP 08 (2010) 012 [arXiv:1007.2116] [INSPIRE].

    Article  MathSciNet  Google Scholar 

  13. X. Han, C.-S. Lin and Y. Yang, Resolution of Chern-Simons-Higgs vortex equations, to appear on Commun. Math. Phys. [arXiv:1503.08330] [INSPIRE].

  14. A. Hanany and D. Tong, Vortices, instantons and branes, JHEP 07 (2003) 037 [hep-th/0306150] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  15. A. Hanany and D. Tong, Vortex strings and four-dimensional gauge dynamics, JHEP 04 (2004) 066 [hep-th/0403158] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  16. J. Hong, Y. Kim and P.-Y. Pac, Multivortex solutions of the Abelian Chern-Simons-Higgs theory, Phys. Rev. Lett. 64 (1990) 2330.

    ADS  MathSciNet  Google Scholar 

  17. A. Hook, S. Kachru and G. Torroba, Supersymmetric defect models and mirror symmetry, JHEP 11 (2013) 004 [arXiv:1308.4416] [INSPIRE].

    Article  ADS  Google Scholar 

  18. J.G. Amar and F. Family, Amar and Family reply, Phys. Rev. Lett. 64 (1990) 2334 [INSPIRE].

    Article  ADS  Google Scholar 

  19. A. Jaffe and C.H. Taubes, Vortices and monopoles, Birkhäuser, Boston U.S.A. (1980).

    MATH  Google Scholar 

  20. B. Julia and A. Zee, Poles with both magnetic and electric charges in non-Abelian gauge theory, Phys. Rev. D 11 (1975) 2227 [INSPIRE].

    ADS  Google Scholar 

  21. K. Konishi, Advent of non-Abelian vortices and monopoles: further thoughts about duality and confinement, Prog. Theor. Phys. Suppl. 177 (2009) 83 [arXiv:0809.1370] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  22. E.H. Lieb and Y. Yang, Non-Abelian vortices in supersymmetric gauge field theory via direct methods, Commun. Math. Phys. 313 (2012) 445 [arXiv:1106.1626] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. S. Mandelstam, Vortices and quark confinement in non-Abelian gauge theories, Phys. Lett. B 53 (1975) 476 [INSPIRE].

    Article  ADS  Google Scholar 

  24. S. Mandelstam, General introduction to confinement, Phys. Rept. C 67 (1980) 109.

    Article  ADS  MathSciNet  Google Scholar 

  25. N.S. Manton and N.A. Rink, Geometry and energy of non-Abelian vortices, J. Math. Phys. 52 (2011) 043511 [arXiv:1012.3014] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  26. A. Marshakov and A. Yung, Non-Abelian confinement via Abelian flux tubes in softly broken \( \mathcal{N}=2 \) SUSY QCD, Nucl. Phys. B 647 (2002) 3 [hep-th/0202172] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  27. Y. Nambu, Strings, monopoles and gauge fields, Phys. Rev. D 10 (1974) 4262 [INSPIRE].

    ADS  Google Scholar 

  28. S.M. Nasir, Vortices and flat connections, Phys. Lett. B 419 (1998) 253 [hep-th/9807020] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  29. H.B. Nielsen and P. Olesen, Vortex line models for dual strings, Nucl. Phys. B 61 (1973) 45 [INSPIRE].

    Article  ADS  Google Scholar 

  30. M. Noguchi, Abelian Higgs theory on Riemann surfaces, Thesis, Duke University (1985).

  31. M. Noguchi, Yang-Mills Higgs theory on a compact Riemann surface, J. Math. Phys. 28 (1987) 2343 [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. M.K. Prasad and C.M. Sommerfield, An exact classical solution for the ’t Hooft monopole and the Julia-Zee dyon, Phys. Rev. Lett. 35 (1975) 760 [INSPIRE].

    Article  ADS  Google Scholar 

  33. N. Seiberg and E. Witten, Electric-magnetic duality, monopole condensation and confinement in N = 2 supersymmetric Yang-Mills theory, Nucl. Phys. B 426 (1994) 19 [Erratum ibid. B 430 (1994) 485] [hep-th/9407087] [INSPIRE].

  34. M. Shifman and M. Ünsal, Confinement in Yang-Mills: elements of a big picture, Nucl. Phys. Proc. Suppl. 186 (2009) 235 [arXiv:0810.3861] [INSPIRE].

    Article  ADS  Google Scholar 

  35. M. Shifman and A. Yung, Non-Abelian string junctions as confined monopoles, Phys. Rev. D 70 (2004) 045004 [hep-th/0403149] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  36. M. Shifman and A. Yung, Localization of non-Abelian gauge fields on domain walls at weak coupling: D-brane prototypes, Phys. Rev. D 70 (2004) 025013 [hep-th/0312257] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  37. M. Shifman and A. Yung, Supersymmetric solitons and how they help us understand non-Abelian gauge theories, Rev. Mod. Phys. 79 (2007) 1139 [hep-th/0703267] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  38. M. Shifman and A. Yung, Supersymmetric solitons, Cambridge University Press, Cambridge U.K. (2009).

    Book  MATH  Google Scholar 

  39. J. Spruck and Y. Yang, Proof of the Julia-Zee theorem, Commun. Math. Phys. 291 (2009) 347 [arXiv:0810.1076] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  40. G. ’t Hooft, Magnetic monopoles in unified gauge theories, Nucl. Phys. B 79 (1974) 276 [INSPIRE].

  41. G. ’t Hooft, On the phase transition towards permanent quark confinement, Nucl. Phys. B 138 (1978) 1 [INSPIRE].

  42. G. ’t Hooft, A property of electric and magnetic flux in non-Abelian gauge theories, Nucl. Phys. B 153 (1979) 141 [INSPIRE].

  43. G. Tarantello, Multiple condensate solutions for the Chern-Simons-Higgs theory, J. Math. Phys. 37 (1996) 3769 [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  44. D. Tong, TASI lectures on solitons: instantons, monopoles, vortices and kinks, hep-th/0509216 [INSPIRE].

  45. D. Tong, Quantum vortex strings: a review, Annals Phys. 324 (2009) 30 [arXiv:0809.5060] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  46. D. Tong and K. Wong, Vortices and impurities, JHEP 01 (2014) 090 [arXiv:1309.2644] [INSPIRE].

    Article  ADS  Google Scholar 

  47. S. Wang and Y. Yang, Abrikosov’s vortices in the critical coupling, SIAM J. Math. Anal. 23 (1992) 1125.

    Article  MathSciNet  MATH  Google Scholar 

  48. Y. Yang, The relativistic non-Abelian Chern-Simons equations, Commun. Math. Phys. 186 (1997) 199 [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  49. Y. Yang, Solitons in field theory and nonlinear analysis, Springer-Verlag, New York U.S.A. (2001).

    Book  MATH  Google Scholar 

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Author notes
  1. Xiaosen Han

    Present address: Dipartimento di Matematica, Università di Roma “Tor Vergata”, Via della Ricerca Scientifica, 00133, Rome, Italy

Authors and Affiliations

  1. Institute of Contemporary Mathematics, School of Mathematics, Henan University, Kaifeng, Henan, 475004, P.R. China

    Xiaosen Han

  2. Department of Mathematics, Tandon School, New York University, Brooklyn, New York, 11201, U.S.A.

    Yisong Yang

  3. NYU-ECNU Institute of Mathematical Sciences, New York University — Shanghai, 3663 North Zhongshan Road, Shanghai, 200062, P.R. China

    Yisong Yang

Authors
  1. Xiaosen Han
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Yisong Yang
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Yisong Yang.

Additional information

ArXiv ePrint: 1510.07077

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Han, X., Yang, Y. Magnetic impurity inspired Abelian Higgs vortices. J. High Energ. Phys. 2016, 46 (2016). https://doi.org/10.1007/JHEP02(2016)046

Download citation

  • Received: 27 October 2015

  • Accepted: 12 December 2015

  • Published: 08 February 2016

  • DOI: https://doi.org/10.1007/JHEP02(2016)046

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Field Theories in Lower Dimensions
  • Solitons
  • Monopoles, and Instantons
  • Chern-Simons Theories
Download PDF

Working on a manuscript?

Avoid the common mistakes

Advertisement

Over 10 million scientific documents at your fingertips

Switch Edition
  • Academic Edition
  • Corporate Edition
  • Home
  • Impressum
  • Legal information
  • Privacy statement
  • California Privacy Statement
  • How we use cookies
  • Manage cookies/Do not sell my data
  • Accessibility
  • FAQ
  • Contact us
  • Affiliate program

Not affiliated

Springer Nature

© 2023 Springer Nature Switzerland AG. Part of Springer Nature.