Advertisement

Journal of High Energy Physics

, 2015:183 | Cite as

Wilson lines and Chern-Simons flux in explicit heterotic Calabi-Yau compactifications

  • Fabio Apruzzi
  • Fridrik Freyr Gautason
  • Susha Parameswaran
  • Marco Zagermann
Open Access
Regular Article - Theoretical Physics

Abstract

We study to what extent Wilson lines in heterotic Calabi-Yau compactifications lead to non-trivial H-flux via Chern-Simons terms. Wilson lines are basic ingredients for Standard Model constructions but their induced H-flux may affect the consistency of the leading order background geometry and of the two-dimensional worldsheet theory. Moreover H-flux in heterotic compactifications would play an important role for moduli stabilization and could strongly constrain the supersymmetry breaking scale. We show how to compute H-flux and the corresponding superpotential, given an explicit complete intersection Calabi-Yau compactification and choice of Wilson lines. We do so by identifying large classes of special Lagrangian submanifolds in the Calabi-Yau, understanding how the Wilson lines project onto these submanifolds, and computing their Chern-Simons invariants. We illustrate our procedure with the quintic hypersurface as well as the split-bicubic, which can provide a potentially realistic three generation model.

Keywords

Flux compactifications Compactification and String Models Superstrings and Heterotic Strings Superstring Vacua 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    V. Braun, Y.-H. He, B.A. Ovrut and T. Pantev, A Heterotic standard model, Phys. Lett. B 618 (2005) 252 [hep-th/0501070] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  2. [2]
    V. Braun, Y.-H. He, B.A. Ovrut and T. Pantev, The Exact MSSM spectrum from string theory, JHEP 05 (2006) 043 [hep-th/0512177] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  3. [3]
    V. Bouchard and R. Donagi, An SU(5) heterotic standard model, Phys. Lett. B 633 (2006) 783 [hep-th/0512149] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  4. [4]
    L.B. Anderson, J. Gray, Y.-H. He and A. Lukas, Exploring Positive Monad Bundles And A New Heterotic Standard Model, JHEP 02 (2010) 054 [arXiv:0911.1569] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  5. [5]
    V. Braun, P. Candelas, R. Davies and R. Donagi, The MSSM Spectrum from (0,2)-Deformations of the Heterotic Standard Embedding, JHEP 05 (2012) 127 [arXiv:1112.1097] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  6. [6]
    L.B. Anderson, J. Gray, A. Lukas and E. Palti, Heterotic Line Bundle Standard Models, JHEP 06 (2012) 113 [arXiv:1202.1757] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  7. [7]
    V. Braun, Y.-H. He and B.A. Ovrut, Supersymmetric Hidden Sectors for Heterotic Standard Models, JHEP 09 (2013) 008 [arXiv:1301.6767] [INSPIRE].CrossRefADSGoogle Scholar
  8. [8]
    E. Witten, New Issues in Manifolds of SU(3) Holonomy, Nucl. Phys. B 268 (1986) 79 [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  9. [9]
    L.B. Anderson, J. Gray, A. Lukas and B. Ovrut, Stabilizing the Complex Structure in Heterotic Calabi-Yau Vacua, JHEP 02 (2011) 088 [arXiv:1010.0255] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  10. [10]
    L.B. Anderson, J. Gray, A. Lukas and B. Ovrut, Stabilizing All Geometric Moduli in Heterotic Calabi-Yau Vacua, Phys. Rev. D 83 (2011) 106011 [arXiv:1102.0011] [INSPIRE].ADSGoogle Scholar
  11. [11]
    L.B. Anderson, J. Gray, A. Lukas and B. Ovrut, The Atiyah Class and Complex Structure Stabilization in Heterotic Calabi-Yau Compactifications, JHEP 10 (2011) 032 [arXiv:1107.5076] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  12. [12]
    L.B. Anderson, J. Gray, A. Lukas and B. Ovrut, Vacuum Varieties, Holomorphic Bundles and Complex Structure Stabilization in Heterotic Theories, JHEP 07 (2013) 017 [arXiv:1304.2704] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  13. [13]
    S. Gukov, S. Kachru, X. Liu and L. McAllister, Heterotic moduli stabilization with fractional Chern-Simons invariants, Phys. Rev. D 69 (2004) 086008 [hep-th/0310159] [INSPIRE].ADSMathSciNetGoogle Scholar
  14. [14]
    M. Cicoli, S. de Alwis and A. Westphal, Heterotic Moduli Stabilisation, JHEP 10 (2013) 199 [arXiv:1304.1809] [INSPIRE].CrossRefADSGoogle Scholar
  15. [15]
    A. Strominger, Superstrings with Torsion, Nucl. Phys. B 274 (1986) 253 [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  16. [16]
    E. Witten, Global Anomalies in String Theory, Symposium on Anomalies, Geometry, Topology, edited by W.A. Bardeen and A.R. White, World Scientific, Singapore (1985), pg. 61–99.Google Scholar
  17. [17]
    H. Partouche and B. Pioline, Rolling among G 2 vacua, JHEP 03 (2001) 005 [hep-th/0011130] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  18. [18]
    M. Dine and N. Seiberg, Nonrenormalization Theorems in Superstring Theory, Phys. Rev. Lett. 57 (1986) 2625 [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  19. [19]
    G. Lopes Cardoso, G. Curio, G. Dall’Agata and D. Lüst, Heterotic string theory on nonKähler manifolds with H flux and gaugino condensate, Fortsch. Phys. 52 (2004) 483 [hep-th/0310021] [INSPIRE].CrossRefADSGoogle Scholar
  20. [20]
    A.R. Frey and M. Lippert, AdS strings with torsion: Non-complex heterotic compactifications, Phys. Rev. D 72 (2005) 126001 [hep-th/0507202] [INSPIRE].ADSMathSciNetGoogle Scholar
  21. [21]
    L. Witten and E. Witten, Large Radius Expansion of Superstring Compactifications, Nucl. Phys. B 281 (1987) 109 [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  22. [22]
    M.B. Green, J. Schwarz and E. Witten, Superstring Theory. Vol. 2: Loop Amplitudes, Anomalies and Phenomenology, Cambridge Monographs on Mathematical Physics (1988).Google Scholar
  23. [23]
    E.A. Bergshoeff and M. de Roo, The Quartic Effective Action of the Heterotic String and Supersymmetry, Nucl. Phys. B 328 (1989) 439 [INSPIRE].CrossRefADSGoogle Scholar
  24. [24]
    G. Curio, A. Krause and D. Lüst, Moduli stabilization in the heterotic/ IIB discretuum, Fortsch. Phys. 54 (2006) 225 [hep-th/0502168] [INSPIRE].CrossRefADSzbMATHGoogle Scholar
  25. [25]
    P. Manousselis, N. Prezas and G. Zoupanos, Supersymmetric compactifications of heterotic strings with fluxes and condensates, Nucl. Phys. B 739 (2006) 85 [hep-th/0511122] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  26. [26]
    O. Lechtenfeld, C. Nolle and A.D. Popov, Heterotic compactifications on nearly Kähler manifolds, JHEP 09 (2010) 074 [arXiv:1007.0236] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  27. [27]
    A. Chatzistavrakidis, O. Lechtenfeld and A.D. Popov, Nearly Kähler heterotic compactifications with fermion condensates, JHEP 04 (2012) 114 [arXiv:1202.1278] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  28. [28]
    P. Candelas, G.T. Horowitz, A. Strominger and E. Witten, Vacuum Configurations for Superstrings, Nucl. Phys. B 258 (1985) 46 [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  29. [29]
    M. Klaput, A. Lukas and E.E. Svanes, Heterotic Calabi-Yau Compactifications with Flux, JHEP 09 (2013) 034 [arXiv:1305.0594] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  30. [30]
    M. Dine, R. Rohm, N. Seiberg and E. Witten, Gluino Condensation in Superstring Models, Phys. Lett. B 156 (1985) 55 [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  31. [31]
    J.P. Derendinger, L.E. Ibáñez and H.P. Nilles, On the Low-Energy D = 4, N = 1 Supergravity Theory Extracted from the D = 10, N = 1 Superstring, Phys. Lett. B 155 (1985) 65 [INSPIRE].CrossRefADSGoogle Scholar
  32. [32]
    R. Rohm and E. Witten, The Antisymmetric Tensor Field in Superstring Theory, Annals Phys. 170 (1986) 454 [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  33. [33]
    S. Gukov, C. Vafa and E. Witten, CFTs from Calabi-Yau four folds, Nucl. Phys. B 584 (2000) 69 [Erratum ibid. B 608 (2001) 477-478] [hep-th/9906070] [INSPIRE].
  34. [34]
    M. Becker and D. Constantin, A Note on flux induced superpotentials in string theory, JHEP 08 (2003) 015 [hep-th/0210131] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  35. [35]
    M.A. Shifman and A.I. Vainshtein, On Gluino Condensation in Supersymmetric Gauge Theories. SU(N) and O(N) Groups, Nucl. Phys. B 296 (1988) 445 [INSPIRE].CrossRefADSGoogle Scholar
  36. [36]
    G. Lopes Cardoso, G. Curio, G. Dall’Agata and D. Lüst, BPS action and superpotential for heterotic string compactifications with fluxes, JHEP 10 (2003) 004 [hep-th/0306088] [INSPIRE].CrossRefADSGoogle Scholar
  37. [37]
    E. Witten, Symmetry Breaking Patterns in Superstring Models, Nucl. Phys. B 258 (1985) 75 [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  38. [38]
    P.A. Kirk and E.P. Klassen, Chern-simons invariants of 3-manifolds and representation spaces of knot groups, Math. Ann. 287 (1990) 343.CrossRefzbMATHMathSciNetGoogle Scholar
  39. [39]
    L. Rozansky, A Large k asymptotics of Wittens invariant of Seifert manifolds, Commun. Math. Phys. 171 (1995) 279 [hep-th/9303099] [INSPIRE].CrossRefADSzbMATHMathSciNetGoogle Scholar
  40. [40]
    H. Nishi, Su(n)-chern-simons invariants of seifert fibered 3-manifolds, Int.J.Math. 09 (1998) 295.CrossRefMathSciNetGoogle Scholar
  41. [41]
    P. Green and T. Hübsch, Calabi-yau Manifolds as Complete Intersections in Products of Complex Projective Spaces, Commun. Math. Phys. 109 (1987) 99.CrossRefADSzbMATHGoogle Scholar
  42. [42]
    P. Candelas, A.M. Dale, C.A. Lütken and R. Schimmrigk, Complete Intersection Calabi-Yau Manifolds, Nucl. Phys. B 298 (1988) 493 [INSPIRE].CrossRefADSGoogle Scholar
  43. [43]
    T. Hübsch, Calabi-Yau manifolds: A Bestiary for physicists, World Scientific Publishing, Singapore (1992).CrossRefzbMATHGoogle Scholar
  44. [44]
    D. Joyce, Lectures on Calabi-Yau and special Lagrangian geometry, math/0108088 [INSPIRE].
  45. [45]
    N.J. Hitchin, Lectures on special Lagrangian submanifolds, math/9907034 [INSPIRE].
  46. [46]
    V. Braun, On Free Quotients of Complete Intersection Calabi-Yau Manifolds, JHEP 04 (2011) 005 [arXiv:1003.3235] [INSPIRE].CrossRefADSGoogle Scholar
  47. [47]
    L.B. Anderson, A. Constantin, J. Gray, A. Lukas and E. Palti, A Comprehensive Scan for Heterotic SU(5) GUT models, JHEP 01 (2014) 047 [arXiv:1307.4787] [INSPIRE].CrossRefADSGoogle Scholar
  48. [48]
    A. Hatcher, Notes on Basic 3-Manifold Topology, http://www.math.cornell.edu/~hatcher/3M/3M.pdf (2007).
  49. [49]
    D.R. Auckly, Topological methods to compute chern-simons invariants, Math. Proc. Camb. Phil. Soc. 115 (1994) 229.CrossRefzbMATHMathSciNetGoogle Scholar
  50. [50]
    M. Jankins and W.D. Neumann, Lectures on Seifert Manifolds, Brandeis Lecture Notes 2, Brandais University, Waltham MA, U.S.A. (1983).Google Scholar
  51. [51]
    M.G. Brin, Sifert fibered spaces, arXiv:0711.1346.
  52. [52]
    J. Montesinos, Classical tessellations and three-manifolds, Universitext, Springer-Verlag, Germany (1979).Google Scholar
  53. [53]
    P.A. Kirk and E.P. Klassen, Chern-simons invariants of 3-manifolds decomposed along tori and the circle bundle over the representation space of t2, Comm. Math. Phys. 153 (1993) 521.CrossRefADSzbMATHMathSciNetGoogle Scholar
  54. [54]
    I. Brunner, M.R. Douglas, A.E. Lawrence and C. Romelsberger, D-branes on the quintic, JHEP 08 (2000) 015 [hep-th/9906200] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  55. [55]
    B.A. Ovrut, T. Pantev and R. Reinbacher, Torus fibered Calabi-Yau threefolds with nontrivial fundamental group, JHEP 05 (2003) 040 [hep-th/0212221] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  56. [56]
    V. Braun, B.A. Ovrut, T. Pantev and R. Reinbacher, Elliptic Calabi-Yau threefolds with Z 3 × Z 3 Wilson lines, JHEP 12 (2004) 062 [hep-th/0410055] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  57. [57]
    D. McDuff and S. Dusa, Introduction to Symplectic Topology, Oxford University Press, Oxford U.K. (1999).Google Scholar
  58. [58]
    P. Candelas, X. de la Ossa, Y.-H. He and B. Szendroi, Triadophilia: A Special Corner in the Landscape, Adv. Theor. Math. Phys. 12 (2008) 429 [arXiv:0706.3134] [INSPIRE].CrossRefzbMATHMathSciNetGoogle Scholar
  59. [59]
    V. Braun, T. Brelidze, M.R. Douglas and B.A. Ovrut, Calabi-Yau Metrics for Quotients and Complete Intersections, JHEP 05 (2008) 080 [arXiv:0712.3563] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  60. [60]
    C.G.A. Harnack, Über Vieltheiligkeit der ebenen algebraischen Curven, Math. Ann. 10 (1876) 189.CrossRefMathSciNetGoogle Scholar
  61. [61]
    R. Blumenhagen, S. Moster and T. Weigand, Heterotic GUT and standard model vacua from simply connected Calabi-Yau manifolds, Nucl. Phys. B 751 (2006) 186 [hep-th/0603015] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  62. [62]
    L. Anguelova, C. Quigley and S. Sethi, The Leading Quantum Corrections to Stringy Kähler Potentials, JHEP 10 (2010) 065 [arXiv:1007.4793] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  63. [63]
    L. Anguelova and C. Quigley, Quantum Corrections to Heterotic Moduli Potentials, JHEP 02 (2011) 113 [arXiv:1007.5047] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  64. [64]
    E. Palti, Model building with intersecting D6-branes on smooth Calabi-Yau manifolds, JHEP 04 (2009) 099 [arXiv:0902.3546] [INSPIRE].CrossRefADSGoogle Scholar
  65. [65]
    F. Denef, (Dis)assembling special Lagrangians, hep-th/0107152 [INSPIRE].

Copyright information

© The Author(s) 2015

Authors and Affiliations

  • Fabio Apruzzi
    • 1
    • 3
  • Fridrik Freyr Gautason
    • 1
    • 2
    • 4
  • Susha Parameswaran
    • 1
    • 2
  • Marco Zagermann
    • 1
    • 2
  1. 1.Institut für Theoretische PhysikHannoverGermany
  2. 2.Center for Quantum Engineering and Spacetime ResearchLeibniz Universität HannoverHannoverGermany
  3. 3.Department of Physics, Robeson Hall, Virginia TechBlacksburgU.S.A.
  4. 4.Instituut voor Theoretische FysicaK.U. LeuvenLeuvenBelgium

Personalised recommendations