Skip to main content
Springer Nature Link
Account
Menu
Find a journal Publish with us Track your research
Search
Cart
  1. Home
  2. Journal of High Energy Physics
  3. Article

Generalized global symmetries

  • Regular Article - Theoretical Physics
  • Open access
  • Published: 26 February 2015
  • Volume 2015, article number 172, (2015)
  • Cite this article
Download PDF

You have full access to this open access article

Journal of High Energy Physics Aims and scope Submit manuscript
Generalized global symmetries
Download PDF
  • Davide Gaiotto1,
  • Anton Kapustin2,
  • Nathan Seiberg3 &
  • …
  • Brian Willett3 
  • 7992 Accesses

  • 65 Altmetric

  • 4 Mentions

  • Explore all metrics

A preprint version of the article is available at arXiv.

Abstract

A q-form global symmetry is a global symmetry for which the charged operators are of space-time dimension q; e.g. Wilson lines, surface defects, etc., and the charged excitations have q spatial dimensions; e.g. strings, membranes, etc. Many of the properties of ordinary global symmetries (q = 0) apply here. They lead to Ward identities and hence to selection rules on amplitudes. Such global symmetries can be coupled to classical background fields and they can be gauged by summing over these classical fields. These generalized global symmetries can be spontaneously broken (either completely or to a sub-group). They can also have ’t Hooft anomalies, which prevent us from gauging them, but lead to ’t Hooft anomaly matching conditions. Such anomalies can also lead to anomaly inflow on various defects and exotic Symmetry Protected Topological phases. Our analysis of these symmetries gives a new unified perspective of many known phenomena and uncovers new results.

Article PDF

Download to read the full article text

Similar content being viewed by others

On 2-group global symmetries and their anomalies

Article Open access 21 March 2019

Comments on global symmetries, anomalies, and duality in (2 + 1)d

Article Open access 21 April 2017

Continuous generalized symmetries in three dimensions

Article Open access 19 May 2023
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

References

  1. M. Kalb and P. Ramond, Classical direct interstring action, Phys. Rev. D 9 (1974) 2273 [INSPIRE].

    ADS  Google Scholar 

  2. J. Villain, Theory of one-dimensional and two-dimensional magnets with an easy magnetization plane. 2. The planar, classical, two-dimensional magnet, J. Phys. (France) 36 (1975) 581 [INSPIRE].

    Article  Google Scholar 

  3. R. Savit, Topological excitations in U(1) invariant theories, Phys. Rev. Lett. 39 (1977) 55 [INSPIRE].

    Article  ADS  Google Scholar 

  4. P. Orland, Instantons and disorder in antisymmetric tensor gauge fields, Nucl. Phys. B 205 (1982) 107 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  5. C. Teitelboim, Gauge invariance for extended objects, Phys. Lett. B 167 (1986) 63 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  6. C. Teitelboim, Monopoles of higher rank, Phys. Lett. B 167 (1986) 69 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  7. J. Cheeger and J. Simons, Differential characters and geometric invariants, Lect. Notes Math. 1167 (1985) 50.

    Article  MathSciNet  Google Scholar 

  8. P. Deligne, Théorie de Hodge II, Publ. Math. Inst. Hautes Études Sci. 40 (1971) 5.

    Article  MATH  MathSciNet  Google Scholar 

  9. A. Beilinson, Higher regulators and values of L-functions, J. Sov. Math. 30 (1985) 2036.

    Article  MATH  Google Scholar 

  10. A. Kapustin and R. Thorngren, Higher symmetry and gapped phases of gauge theories, arXiv:1309.4721 [INSPIRE].

  11. A. Kapustin and N. Seiberg, Coupling a QFT to a TQFT and duality, JHEP 04 (2014) 001 [arXiv:1401.0740] [INSPIRE].

    Article  ADS  Google Scholar 

  12. Z. Nussinov and G. Ortiz, A symmetry principle for topological quantum order, Annals Phys. 324 (2009) 977 [cond-mat/0702377].

    Article  ADS  MATH  MathSciNet  Google Scholar 

  13. T. Banks and N. Seiberg, Symmetries and strings in field theory and gravity, Phys. Rev. D 83 (2011) 084019 [arXiv:1011.5120] [INSPIRE].

    ADS  Google Scholar 

  14. T.T. Dumitrescu and N. Seiberg, Supercurrents and brane currents in diverse dimensions, JHEP 07 (2011) 095 [arXiv:1106.0031] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  15. O. Aharony, N. Seiberg and Y. Tachikawa, Reading between the lines of four-dimensional gauge theories, JHEP 08 (2013) 115 [arXiv:1305.0318] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  16. A. Kapustin and R. Thorngren, Topological field theory on a lattice, discrete theta-angles and confinement, Adv. Theor. Math. Phys. 18 (2014) 1233 [arXiv:1308.2926] [INSPIRE].

    Article  MathSciNet  Google Scholar 

  17. J.D. Bjorken, A dynamical origin for the electromagnetic field, Annals Phys. 24 (1963) 174 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  18. E. Witten, SL(2, Z) action on three-dimensional conformal field theories with Abelian symmetry, in From fields to strings, vol. 2, M. Shifman et al. eds., World Scientific, Singapore (2005), pg. 1173 [hep-th/0307041] [INSPIRE].

  19. R. Dijkgraaf and E. Witten, Topological gauge theories and group cohomology, Commun. Math. Phys. 129 (1990) 393 [INSPIRE].

    Article  ADS  MATH  MathSciNet  Google Scholar 

  20. F. Cachazo, N. Seiberg and E. Witten, Phases of N = 1 supersymmetric gauge theories and matrices, JHEP 02 (2003) 042 [hep-th/0301006] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  21. D.S. Freed, G.W. Moore and G. Segal, The uncertainty of fluxes, Commun. Math. Phys. 271 (2007) 247 [hep-th/0605198] [INSPIRE].

    Article  ADS  MATH  MathSciNet  Google Scholar 

  22. D.S. Freed, G.W. Moore and G. Segal, Heisenberg groups and noncommutative fluxes, Annals Phys. 322 (2007) 236 [hep-th/0605200] [INSPIRE].

    Article  ADS  MATH  MathSciNet  Google Scholar 

  23. J. Fröhlich, J. Fuchs, I. Runkel and C. Schweigert, Duality and defects in rational conformal field theory, Nucl. Phys. B 763 (2007) 354 [hep-th/0607247] [INSPIRE].

    Article  ADS  Google Scholar 

  24. A. Davydov, L. Kong and I. Runkel, Invertible defects and isomorphisms of rational CFTs, Adv. Theor. Math. Phys. 15 (2011) [arXiv:1004.4725] [INSPIRE].

  25. I. Brunner, N. Carqueville and D. Plencner, Discrete torsion defects, arXiv:1404.7497 [INSPIRE].

  26. C. Vafa, Modular invariance and discrete torsion on orbifolds, Nucl. Phys. B 273 (1986) 592 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  27. X. Chen, Z.-C. Gu, Z.-X. Liu and X.-G. Wen, Symmetry protected topological orders and the group cohomology of their symmetry group, Phys. Rev. B 87 (2013) 155114 [arXiv:1106.4772] [INSPIRE].

    Article  ADS  Google Scholar 

  28. A. Kapustin, Symmetry protected topological phases, anomalies and cobordisms: beyond group cohomology, arXiv:1403.1467 [INSPIRE].

  29. A. Kapustin, R. Thorngren, A. Turzillo and Z. Wang, Fermionic symmetry protected topological phases and cobordisms, arXiv:1406.7329 [INSPIRE].

  30. Z.-C. Gu and X.-G. Wen, Symmetry-protected topological orders for interacting fermions: fermionic topological nonlinear σ models and a special group supercohomology theory, Phys. Rev. B 90 (2014) 115141 [arXiv:1201.2648] [INSPIRE].

    Article  ADS  Google Scholar 

  31. D.S. Freed, Short-range entanglement and invertible field theories, arXiv:1406.7278 [INSPIRE].

  32. A. Kapustin and R. Thorngren, Anomalies of discrete symmetries in various dimensions and group cohomology, arXiv:1404.3230 [INSPIRE].

  33. S. Gukov and E. Witten, Gauge theory, ramification, and the geometric Langlands program, hep-th/0612073 [INSPIRE].

  34. S. Gukov and E. Witten, Rigid surface operators, Adv. Theor. Math. Phys. 14 (2010) [arXiv:0804.1561] [INSPIRE].

  35. J.M. Maldacena, G.W. Moore and N. Seiberg, D-brane charges in five-brane backgrounds, JHEP 10 (2001) 005 [hep-th/0108152] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  36. N. Seiberg, Modifying the sum over topological sectors and constraints on supergravity, JHEP 07 (2010) 070 [arXiv:1005.0002] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  37. Z. Komargodski and N. Seiberg, Comments on the Fayet-Iliopoulos term in field theory and supergravity, JHEP 06 (2009) 007 [arXiv:0904.1159] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  38. N. Seiberg and E. Witten, Electric-magnetic duality, monopole condensation and confinement in N = 2 supersymmetric Yang-Mills theory, Nucl. Phys. B 426 (1994) 19 [Erratum ibid. B 430 (1994) 485] [hep-th/9407087] [INSPIRE].

  39. N. Seiberg and E. Witten, Monopoles, duality and chiral symmetry breaking in N = 2 supersymmetric QCD, Nucl. Phys. B 431 (1994) 484 [hep-th/9408099] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  40. A. Kapustin, Wilson-’t Hooft operators in four-dimensional gauge theories and S-duality, Phys. Rev. D 74 (2006) 025005 [hep-th/0501015] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  41. E. Witten, Quantum field theory and the Jones polynomial, Commun. Math. Phys. 121 (1989) 351 [INSPIRE].

    Article  ADS  MATH  MathSciNet  Google Scholar 

  42. D. Gepner, Foundations of rational quantum field theory. 1, hep-th/9211100 [INSPIRE].

  43. M. Mariño and C. Vafa, Framed knots at large-N, Contemp. Math. 310 (2002) 185 [hep-th/0108064] [INSPIRE].

    Article  Google Scholar 

  44. D. Gaiotto, G.W. Moore and A. Neitzke, Framed BPS states, Adv. Theor. Math. Phys. 17 (2013) 241 [arXiv:1006.0146] [INSPIRE].

    Article  MATH  MathSciNet  Google Scholar 

  45. G. Moore, Lecture notes for Felix Klein lectures, http://www.physics.rutgers.edu/~gmoore/FelixKleinLectureNotes.pdf.

  46. E. Witten, Geometric Langlands from six dimensions, arXiv:0905.2720 [INSPIRE].

  47. N. Seiberg and W. Taylor, Charge lattices and consistency of 6D supergravity, JHEP 06 (2011) 001 [arXiv:1103.0019] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  48. E.H. Fradkin and S.H. Shenker, Phase diagrams of lattice gauge theories with Higgs fields, Phys. Rev. D 19 (1979) 3682 [INSPIRE].

    ADS  Google Scholar 

  49. T. Banks and E. Rabinovici, Finite temperature behavior of the lattice Abelian Higgs model, Nucl. Phys. B 160 (1979) 349 [INSPIRE].

    Article  ADS  Google Scholar 

  50. J.H.C. Whitehead, On simply connected, 4-dimensional polyhedra, Comm. Math. Helv. 22 (1949) 48.

    Article  MATH  MathSciNet  Google Scholar 

  51. S.M. Kravec and J. McGreevy, A gauge theory generalization of the fermion-doubling theorem, Phys. Rev. Lett. 111 (2013) 161603 [arXiv:1306.3992] [INSPIRE].

    Article  ADS  Google Scholar 

  52. P. Novotný and J. Hrivnák, On orbits of the ring \( {\mathrm{\mathbb{Z}}}_m^n \) under the action of the group SL(m, \( {\mathrm{\mathbb{Z}}}_m \)), arXiv:0710.0326.

  53. N. Seiberg, Electric-magnetic duality in supersymmetric non-Abelian gauge theories, Nucl. Phys. B 435 (1995) 129 [hep-th/9411149] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  54. K.A. Intriligator and N. Seiberg, Duality, monopoles, dyons, confinement and oblique confinement in supersymmetric SO(N c ) gauge theories, Nucl. Phys. B 444 (1995) 125 [hep-th/9503179] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  55. E. Witten, Lecture II-9, in Quantum fields and strings: a course for mathematicians. Vol. 1 and 2, P. Deligne et al. eds., AMS, Providence U.S.A. (1999).

  56. M. Dierigl and A. Pritzel, Topological model for domain walls in (super-)Yang-Mills theories, Phys. Rev. D 90 (2014) 105008 [arXiv:1405.4291] [INSPIRE].

    ADS  Google Scholar 

  57. B.S. Acharya and C. Vafa, On domain walls of N = 1 supersymmetric Yang-Mills in four-dimensions, hep-th/0103011 [INSPIRE].

  58. S. Gukov and A. Kapustin, Topological quantum field theory, nonlocal operators and gapped phases of gauge theories, arXiv:1307.4793 [INSPIRE].

  59. R.J. Milgram, Surgery with coefficients, Ann. Math. 100 (1974) 194.

    Article  MATH  MathSciNet  Google Scholar 

  60. S.S. Razamat and B. Willett, Global properties of supersymmetric theories and the lens space, arXiv:1307.4381 [INSPIRE].

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Authors and Affiliations

  1. Perimeter Institute for Theoretical Physics, 31 Caroline St., Waterloo, Ontario, N2L 2Y5, Canada

    Davide Gaiotto

  2. Simons Center for Geometry and Physics, State University of New York, Stony Brook, NY, 11790, U.S.A.

    Anton Kapustin

  3. School of Natural Sciences, Institute for Advanced Study, 1 Einstein Dr., Princeton, NJ, 08540, U.S.A.

    Nathan Seiberg & Brian Willett

Authors
  1. Davide Gaiotto
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Anton Kapustin
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Nathan Seiberg
    View author publications

    You can also search for this author in PubMed Google Scholar

  4. Brian Willett
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Anton Kapustin.

Additional information

ArXiv ePrint: 1412.5148

On leave of absence from California Institute of Technology, U.S.A. (Anton Kapustin)

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gaiotto, D., Kapustin, A., Seiberg, N. et al. Generalized global symmetries. J. High Energ. Phys. 2015, 172 (2015). https://doi.org/10.1007/JHEP02(2015)172

Download citation

  • Received: 01 February 2015

  • Accepted: 01 February 2015

  • Published: 26 February 2015

  • DOI: https://doi.org/10.1007/JHEP02(2015)172

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Global Symmetries
  • Wilson
  • ’t Hooft and Polyakov loops
  • Topological States of Matter
  • Anomalies in Field and String Theories
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us
  • Track your research

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Journal finder
  • Publish your research
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our imprints

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support
  • Cancel contracts here

Not affiliated

Springer Nature

© 2025 Springer Nature