Advertisement

Journal of High Energy Physics

, 2015:116 | Cite as

A worldsheet theory for supergravity

  • Tim Adamo
  • Eduardo Casali
  • David Skinner
Open Access
Regular Article - Theoretical Physics

Abstract

We present a worldsheet theory that describes maps into a curved target space equipped with a B-field and dilaton. The conditions for the theory to be consistent at the quantum level can be computed exactly, and are that the target space fields obey the nonlinear d = 10 supergravity equations of motion, with no higher curvature terms. The path integral is constrained to obey a generalization of the scattering equations to curved space. Remarkably, the supergravity field equations emerge as quantum corrections to these curved space scattering equations.

Keywords

Classical Theories of Gravity Supergravity Models Anomalies in Field and String Theories 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    J. Scherk, Zero-slope limit of the dual resonance model, Nucl. Phys. B 31 (1971) 222 [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  2. [2]
    T. Yoneya, Quantum gravity and the zero slope limit of the generalized Virasoro model, Lett. Nuovo Cim. 8 (1973) 951 [INSPIRE].CrossRefGoogle Scholar
  3. [3]
    J. Scherk and J.H. Schwarz, Dual Models for Nonhadrons, Nucl. Phys. B 81 (1974) 118 [INSPIRE].CrossRefADSGoogle Scholar
  4. [4]
    L. Álvarez-Gaumé and D.Z. Freedman, Kähler Geometry and the Renormalization of Supersymmetric σ-models, Phys. Rev. D 22 (1980) 846 [INSPIRE].ADSGoogle Scholar
  5. [5]
    L. Álvarez-Gaumé, D.Z. Freedman and S. Mukhi, The Background Field Method and the Ultraviolet Structure of the Supersymmetric Nonlinear σ-model, Annals Phys. 134 (1981) 85 [INSPIRE].CrossRefADSGoogle Scholar
  6. [6]
    E. Braaten, T.L. Curtright and C.K. Zachos, Torsion and Geometrostasis in Nonlinear σ-models, Nucl. Phys. B 260 (1985) 630 [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  7. [7]
    C.G. Callan Jr., E.J. Martinec, M.J. Perry and D. Friedan, Strings in Background Fields, Nucl. Phys. B 262 (1985) 593 [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  8. [8]
    D.J. Gross and E. Witten, Superstring Modifications of Einsteins Equations, Nucl. Phys. B 277 (1986) 1 [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  9. [9]
    M.T. Grisaru, A.E.M. van de Ven and D. Zanon, Four Loop β-function for the N = 1 and N =2 Supersymmetric Nonlinear σ-model in Two-Dimensions, Phys. Lett. B 173 (1986) 423 [INSPIRE].CrossRefADSGoogle Scholar
  10. [10]
    M.T. Grisaru, A.E.M. van de Ven and D. Zanon, Four Loop Divergences for the N = 1 Supersymmetric Nonlinear σ-model in Two-Dimensions, Nucl. Phys. B 277 (1986) 409 [INSPIRE].CrossRefADSGoogle Scholar
  11. [11]
    L. Mason and D. Skinner, Ambitwistor strings and the scattering equations, JHEP 07 (2014) 048 [arXiv:1311.2564] [INSPIRE].CrossRefADSGoogle Scholar
  12. [12]
    N. Berkovits, Infinite Tension Limit of the Pure Spinor Superstring, JHEP 03 (2014) 017 [arXiv:1311.4156] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  13. [13]
    T. Adamo, E. Casali and D. Skinner, Ambitwistor strings and the scattering equations at one loop, JHEP 04 (2014) 104 [arXiv:1312.3828] [INSPIRE].CrossRefADSGoogle Scholar
  14. [14]
    F. Cachazo, S. He and E.Y. Yuan, Scattering of Massless Particles in Arbitrary Dimensions, Phys. Rev. Lett. 113 (2014) 171601 [arXiv:1307.2199] [INSPIRE].CrossRefADSGoogle Scholar
  15. [15]
    F. Cachazo, S. He and E.Y. Yuan, Scattering of Massless Particles: Scalars, Gluons and Gravitons, JHEP 07 (2014) 033 [arXiv:1309.0885] [INSPIRE].CrossRefADSGoogle Scholar
  16. [16]
    E. Witten, Parity invariance for strings in twistor space, Adv. Theor. Math. Phys. 8 (2004) 779 [hep-th/0403199] [INSPIRE].CrossRefzbMATHMathSciNetGoogle Scholar
  17. [17]
    N. Berkovits and E. Witten, Conformal supergravity in twistor-string theory, JHEP 08 (2004) 009 [hep-th/0406051] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  18. [18]
    D. Skinner, Twistor Strings for N = 8 Supergravity, arXiv:1301.0868 [INSPIRE].
  19. [19]
    Y. Geyer, A.E. Lipstein and L.J. Mason, Ambitwistor Strings in Four Dimensions, Phys. Rev. Lett. 113 (2014) 081602 [arXiv:1404.6219] [INSPIRE].CrossRefADSGoogle Scholar
  20. [20]
    D.J. Gross and P.F. Mende, String Theory Beyond the Planck Scale, Nucl. Phys. B 303 (1988) 407 [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  21. [21]
    M. Blau, The Mathai-Quillen formalism and topological field theory, J. Geom. Phys. 11 (1993) 95 [hep-th/9203026] [INSPIRE].CrossRefADSzbMATHMathSciNetGoogle Scholar
  22. [22]
    J. Fröhlich and K. Gawedzki, Conformal field theory and geometry of strings, hep-th/9310187 [INSPIRE].
  23. [23]
    F. Malikov, V. Schechtman and A. Vaintrob, Chiral de Rham complex, Commun. Math. Phys. 204 (1999) 439 [math/9803041] [INSPIRE].CrossRefADSzbMATHMathSciNetGoogle Scholar
  24. [24]
    F. Malikov and V. Schechtman, Chiral de Rham complex II, Trans. Amer. Math. Soc. Series 2 194 (1999)149, [math/9901065].MathSciNetGoogle Scholar
  25. [25]
    V. Gorbounov, F. Malikov and V. Schechtman, On chiral differential operators over homogeneous spaces, Int. J. Math. Math. Sci. 26 (2001) 83 [math/0008154].CrossRefzbMATHMathSciNetGoogle Scholar
  26. [26]
    N.A. Nekrasov, Lectures on curved beta-gamma systems, pure spinors and anomalies, hep-th/0511008 [INSPIRE].
  27. [27]
    E. Witten, Two-dimensional models with (0,2) supersymmetry: Perturbative aspects, Adv. Theor. Math. Phys. 11 (2007) [hep-th/0504078] [INSPIRE].
  28. [28]
    L. Baulieu, A.S. Losev and N.A. Nekrasov, Target space symmetries in topological theories. 1., JHEP 02 (2002) 021 [hep-th/0106042] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  29. [29]
    D. Ben-Zvi, R. Heluani and M. Szczesny, Supersymmetry of the chiral de Rham complex, Compos. Math. 144 (2008) 503, [math/0601532].zbMATHMathSciNetGoogle Scholar
  30. [30]
    E. Frenkel, A. Losev and N. Nekrasov, Instantons beyond topological theory. I, hep-th/0610149 [INSPIRE].
  31. [31]
    E. Frenkel, A. Losev and N. Nekrasov, Instantons beyond topological theory II, arXiv:0803.3302 [INSPIRE].
  32. [32]
    J. Ekstrand, R. Heluani, J. Kallen and M. Zabzine, Non-linear σ-models via the chiral de Rham complex, Adv. Theor. Math. Phys. 13 (2009) 1221 [arXiv:0905.4447] [INSPIRE].CrossRefzbMATHMathSciNetGoogle Scholar
  33. [33]
    T. Banks, D. Nemeschansky and A. Sen, Dilaton Coupling and BRST Quantization of Bosonic Strings, Nucl. Phys. B 277 (1986) 67 [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  34. [34]
    A.S. Schwarz and A.A. Tseytlin, Dilaton shift under duality and torsion of elliptic complex, Nucl. Phys. B 399 (1993) 691 [hep-th/9210015] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  35. [35]
    T.H. Buscher, Path Integral Derivation of Quantum Duality in Nonlinear σ-models, Phys. Lett. B 201 (1988) 466 [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  36. [36]
    O. Hohm, W. Siegel and B. Zwiebach, Doubled α-geometry, JHEP 02 (2014) 065 [arXiv:1306.2970] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  37. [37]
    S.G. Naculich, Scattering equations and BCJ relations for gauge and gravitational amplitudes with massive scalar particles, JHEP 09 (2014) 029 [arXiv:1407.7836] [INSPIRE].CrossRefGoogle Scholar
  38. [38]
    C. LeBrun, Spaces of Complex Null Geodesics in Complex Riemannanian Geometry, Trans. Amer. Math. Soc. 278 (1983) 209.CrossRefzbMATHMathSciNetGoogle Scholar
  39. [39]
    R. Ward and R. Wells, Twistor Geometry and Field Theory,0 Cambridge University Press (1990).Google Scholar
  40. [40]
    T. Adamo, E. Casali and D. Skinner, Perturbative gravity at null infinity, Class. Quant. Grav. 31 (2014) 225008 [arXiv:1405.5122] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  41. [41]
    Y. Geyer, A.E. Lipstein and L. Mason, Ambitwistor strings at null infinity and (subleading) soft limits, Class. Quant. Grav. 32 (2015) 055003 [arXiv:1406.1462] [INSPIRE].CrossRefADSGoogle Scholar
  42. [42]
    N. Berkovits, Twistor Origin of the Superstring, arXiv:1409.2510 [INSPIRE].
  43. [43]
    E. Witten, Twistor-Like Transform in Ten-Dimensions, Nucl. Phys. B 266 (1986) 245 [INSPIRE].CrossRefADSMathSciNetGoogle Scholar

Copyright information

© The Author(s) 2015

Authors and Affiliations

  1. 1.Department of Applied Mathematics & Theoretical PhysicsUniversity of CambridgeCambridgeUnited Kingdom

Personalised recommendations