Journal of High Energy Physics

, 2015:43 | Cite as

Simulation of QCD with N f = 2 + 1 flavors of non-perturbatively improved Wilson fermions

  • Mattia Bruno
  • Dalibor Djukanovic
  • Georg P. Engel
  • Anthony Francis
  • Gregorio Herdoiza
  • Hanno Horch
  • Piotr Korcyl
  • Tomasz Korzec
  • Mauro Papinutto
  • Stefan SchaeferEmail author
  • Enno E. Scholz
  • Jakob Simeth
  • Hubert Simma
  • Wolfgang Söldner
Open Access
Regular Article - Theoretical Physics


We describe a new set of gauge configurations generated within the CLS effort. These ensembles have N f = 2 + 1 flavors of non-perturbatively improved Wilson fermions in the sea with the Lüscher-Weisz action used for the gluons. Open boundary conditions in time are used to address the problem of topological freezing at small lattice spacings and twisted-mass reweighting for improved stability of the simulations. We give the bare parameters at which the ensembles have been generated and how these parameters have been chosen. Details of the algorithmic setup and its performance are presented as well as measurements of the pion and kaon masses alongside the scale parameter t 0.


Lattice QCD Lattice Gauge Field Theories 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    M. Bruno, J. Finkenrath, F. Knechtli, B. Leder and R. Sommer, On the effects of heavy sea quarks at low energies, arXiv:1410.8374 [INSPIRE].
  2. [2]
    L. Del Debbio, H. Panagopoulos and E. Vicari, θ dependence of SU(N ) gauge theories, JHEP 08 (2002) 044 [hep-th/0204125] [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    C. Bernard et al., Topological susceptibility with the improved Asqtad action, Phys. Rev. D 68 (2003) 114501 [hep-lat/0308019] [INSPIRE].ADSGoogle Scholar
  4. [4]
    ALPHA collaboration, S. Schaefer, R. Sommer and F. Virotta, Critical slowing down and error analysis in lattice QCD simulations, Nucl. Phys. B 845 (2011) 93 [arXiv:1009.5228] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    M. Lüscher, Topology, the Wilson flow and the HMC algorithm, PoS(Lattice 2010)015 [arXiv:1009.5877] [INSPIRE].
  6. [6]
    M. Lüscher, Properties and uses of the Wilson flow in lattice QCD, JHEP 08 (2010) 071 [Erratum ibid. 1403 (2014) 092] [arXiv:1006.4518] [INSPIRE].
  7. [7]
    M. Lüscher and S. Schaefer, Lattice QCD without topology barriers, JHEP 07 (2011) 036 [arXiv:1105.4749] [INSPIRE].CrossRefGoogle Scholar
  8. [8]
    ALPHA collaboration, M. Bruno, S. Schaefer and R. Sommer, Topological susceptibility and the sampling of field space in N f = 2 lattice QCD simulations, JHEP 08 (2014) 150 [arXiv:1406.5363] [INSPIRE].CrossRefGoogle Scholar
  9. [9]
    ALPHA collaboration, P. Fritzsch et al., The strange quark mass and Lambda parameter of two flavor QCD, Nucl. Phys. B 865 (2012) 397 [arXiv:1205.5380] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    M. Lüscher and F. Palombi, Fluctuations and reweighting of the quark determinant on large lattices, PoS(LATTICE 2008)049 [arXiv:0810.0946] [INSPIRE].
  11. [11]
  12. [12]
    M. Lüscher and S. Schaefer, Lattice QCD with open boundary conditions and twisted-mass reweighting, Comput. Phys. Commun. 184 (2013) 519 [arXiv:1206.2809] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  13. [13]
    PACS-CS collaboration, S. Aoki et al., Physical Point Simulation in 2+1 Flavor Lattice QCD, Phys. Rev. D 81 (2010) 074503 [arXiv:0911.2561] [INSPIRE].ADSGoogle Scholar
  14. [14]
    W. Bietenholz et al., Tuning the strange quark mass in lattice simulations, Phys. Lett. B 690 (2010) 436 [arXiv:1003.1114] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    Hadron Spectrum collaboration, H.-W. Lin et al., First results from 2+1 dynamical quark flavors on an anisotropic lattice: Light-hadron spectroscopy and setting the strange-quark mass, Phys. Rev. D 79 (2009) 034502 [arXiv:0810.3588] [INSPIRE].ADSGoogle Scholar
  16. [16]
    R. Baron et al., Light hadrons from lattice QCD with light (u,d), strange and charm dynamical quarks, JHEP 06 (2010) 111 [arXiv:1004.5284] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    S. Borsányi et al., Ab initio calculation of the neutron-proton mass difference, arXiv:1406.4088 [INSPIRE].
  18. [18]
    RBC and UKQCD collaborations, R. Arthur et al., Domain Wall QCD with Near-Physical Pions, Phys. Rev. D 87 (2013) 094514 [arXiv:1208.4412] [INSPIRE].ADSGoogle Scholar
  19. [19]
    JLQCD collaboration, S. Aoki et al., Two-flavor QCD simulation with exact chiral symmetry, Phys. Rev. D 78 (2008) 014508 [arXiv:0803.3197] [INSPIRE].ADSGoogle Scholar
  20. [20]
    MILC collaboration, A. Bazavov et al., Lattice QCD ensembles with four flavors of highly improved staggered quarks, Phys. Rev. D 87 (2013) 054505 [arXiv:1212.4768] [INSPIRE].ADSGoogle Scholar
  21. [21]
    M. Lüscher and P. Weisz, On-Shell Improved Lattice Gauge Theories, Commun. Math. Phys. 97 (1985) 59 [Erratum ibid. 98 (1985) 433] [INSPIRE].
  22. [22]
    K.G. Wilson, Confinement of Quarks, Phys. Rev. D 10 (1974) 2445 [INSPIRE].ADSGoogle Scholar
  23. [23]
    B. Sheikholeslami and R. Wohlert, Improved Continuum Limit Lattice Action for QCD with Wilson Fermions, Nucl. Phys. B 259 (1985) 572 [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    M. Lüscher, S. Sint, R. Sommer and P. Weisz, Chiral symmetry and O(a) improvement in lattice QCD, Nucl. Phys. B 478 (1996) 365 [hep-lat/9605038] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    J. Bulava and S. Schaefer, Improvement of N f = 3 lattice QCD with Wilson fermions and tree-level improved gauge action, Nucl. Phys. B 874 (2013) 188 [arXiv:1304.7093] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  26. [26]
    M. Gell-Mann, R.J. Oakes and B. Renner, Behavior of current divergences under SU(3) × SU(3), Phys. Rev. 175 (1968) 2195 [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    O. Bär and M. Golterman, Chiral perturbation theory for gradient flow observables, Phys. Rev. D 89 (2014) 034505 [arXiv:1312.4999] [INSPIRE].ADSGoogle Scholar
  28. [28]
    ALPHA collaboration, M. Bruno and R. Sommer, On the N f -dependence of gluonic observables, PoS(LATTICE 2013)321 [arXiv:1311.5585] [INSPIRE].
  29. [29]
    S. Borsányi et al., High-precision scale setting in lattice QCD, JHEP 09 (2012) 010 [arXiv:1203.4469] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    R.J. Dowdall, C.T.H. Davies, G.P. Lepage and C. McNeile, V us from π and K decay constants in full lattice QCD with physical u, d, s and c quarks, Phys. Rev. D 88 (2013) 074504 [arXiv:1303.1670] [INSPIRE].ADSGoogle Scholar
  31. [31]
    S. Aoki et al., Review of lattice results concerning low-energy particle physics, Eur. Phys. J. C 74 (2014) 2890 [arXiv:1310.8555] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    S. Sint and P. Weisz, Further results on O(a) improved lattice QCD to one loop order of perturbation theory, Nucl. Phys. B 502 (1997) 251 [hep-lat/9704001] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    T. Bhattacharya, R. Gupta, W. Lee, S.R. Sharpe and J.M.S. Wu, Improved bilinears in lattice QCD with non-degenerate quarks, Phys. Rev. D 73 (2006) 034504 [hep-lat/0511014] [INSPIRE].ADSGoogle Scholar
  34. [34]
    L. Del Debbio, L. Giusti, M. Lüscher, R. Petronzio and N. Tantalo, Stability of lattice QCD simulations and the thermodynamic limit, JHEP 02 (2006) 011 [hep-lat/0512021] [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    T.A. DeGrand, A Conditioning Technique for Matrix Inversion for Wilson Fermions, Comput. Phys. Commun. 52 (1988) 161 [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    M. Hasenbusch, Speeding up the hybrid Monte Carlo algorithm for dynamical fermions, Phys. Lett. B 519 (2001) 177 [hep-lat/0107019] [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    M. Hasenbusch and K. Jansen, Speeding up lattice QCD simulations with clover improved Wilson fermions, Nucl. Phys. B 659 (2003) 299 [hep-lat/0211042] [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    S. Schaefer, Status and challenges of simulations with dynamical fermions, PoS(Lattice 2012)001 [arXiv:1211.5069] [INSPIRE].
  39. [39]
    A.D. Kennedy, I. Horvath and S. Sint, A new exact method for dynamical fermion computations with nonlocal actions, Nucl. Phys. Proc. Suppl. 73 (1999) 834 [hep-lat/9809092] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  40. [40]
    M.A. Clark and A.D. Kennedy, Accelerating dynamical fermion computations using the rational hybrid Monte Carlo (RHMC) algorithm with multiple pseudofermion fields, Phys. Rev. Lett. 98 (2007) 051601 [hep-lat/0608015] [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    B. Jegerlehner, Krylov space solvers for shifted linear systems, hep-lat/9612014 [INSPIRE].
  42. [42]
    S. Duane, A.D. Kennedy, B.J. Pendleton and D. Roweth, Hybrid Monte Carlo, Phys. Lett. B 195 (1987) 216 [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    J.C. Sexton and D.H. Weingarten, Hamiltonian evolution for the hybrid Monte Carlo algorithm, Nucl. Phys. B 380 (1992) 665 [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    I.P. Omelyan, I.M. Mryglod and R. Folk, Symplectic analytically integrable decomposition algorithms: classification, derivation, and application to molecular dynamics, quantum and celestial mechanics simulations, Comput. Phys. Commun. 151 (2003) 272.ADSCrossRefzbMATHMathSciNetGoogle Scholar
  45. [45]
    M. Lüscher and S. Schaefer, Non-renormalizability of the HMC algorithm, JHEP 04 (2011) 104 [arXiv:1103.1810] [INSPIRE].ADSCrossRefGoogle Scholar
  46. [46]
    M. Lüscher, Local coherence and deflation of the low quark modes in lattice QCD, JHEP 07 (2007) 081 [arXiv:0706.2298] [INSPIRE].CrossRefGoogle Scholar
  47. [47]
    M. Lüscher, Deflation acceleration of lattice QCD simulations, JHEP 12 (2007) 011 [arXiv:0710.5417] [INSPIRE].CrossRefGoogle Scholar
  48. [48]
    A. Frommer, K. Kahl, S. Krieg, B. Leder and M. Rottmann, Adaptive Aggregation Based Domain Decomposition Multigrid for the Lattice Wilson Dirac Operator, SIAM J. Sci. Comput. 36 (2014) A1581 [arXiv:1303.1377] [INSPIRE].CrossRefzbMATHMathSciNetGoogle Scholar
  49. [49]
    A. Frommer, K. Kahl, S. Krieg, B. Leder and M. Rottmann, An adaptive aggregation based domain decomposition multilevel method for the lattice Wilson Dirac operator: multilevel results, arXiv:1307.6101 [INSPIRE].
  50. [50]
    N. Madras and A.D. Sokal, The Pivot algorithm: a highly efficient Monte Carlo method for selfavoiding walk, J. Statist. Phys. 50 (1988) 109 [INSPIRE].ADSCrossRefzbMATHMathSciNetGoogle Scholar
  51. [51]
    ALPHA collaboration, U. Wolff, Monte Carlo errors with less errors, Comput. Phys. Commun. 156 (2004) 143 [Erratum ibid. 176 (2007) 383] [hep-lat/0306017] [INSPIRE].
  52. [52]
    S. Schaefer, R. Sommer and F. Virotta, Investigating the critical slowing down of QCD simulations, PoS(LAT2009)032 [arXiv:0910.1465] [INSPIRE].
  53. [53]
    M. Bruno, P. Korcyl, T. Korzec, S. Lottini and S. Schaefer, On the extraction of spectral quantities with open boundary conditions, PoS(LATTICE2014)089 [arXiv:1411.5207] [INSPIRE].
  54. [54]
    A. Hasenfratz, R. Hoffmann and S. Schaefer, Reweighting towards the chiral limit, Phys. Rev. D 78 (2008) 014515 [arXiv:0805.2369] [INSPIRE].ADSGoogle Scholar
  55. [55]
    A. Hasenfratz and A. Alexandru, Evaluating the fermionic determinant of dynamical configurations, Phys. Rev. D 65 (2002) 114506 [hep-lat/0203026] [INSPIRE].ADSGoogle Scholar
  56. [56]
    R. Narayanan and H. Neuberger, Infinite N phase transitions in continuum Wilson loop operators, JHEP 03 (2006) 064 [hep-th/0601210] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  57. [57]
    M. Lüscher and P. Weisz, Perturbative analysis of the gradient flow in non-abelian gauge theories, JHEP 02 (2011) 051 [arXiv:1101.0963] [INSPIRE].ADSCrossRefGoogle Scholar
  58. [58]
    A. Ramos and S. Sint, On O(a 2) effects in gradient flow observables, PoS(LATTICE2014)329 [arXiv:1411.6706] [INSPIRE].
  59. [59]
    JLQCD collaboration, S. Aoki et al., Analysis of hadron propagators with 1000 configurations on a 243 × 64 lattice at β = 6, Nucl. Phys. Proc. Suppl. 47 (1996) 354 [hep-lat/9510013] [INSPIRE].ADSCrossRefGoogle Scholar
  60. [60]
    R. Sommer, Leptonic decays of B and D mesons, Nucl. Phys. Proc. Suppl. 42 (1995) 186 [hep-lat/9411024] [INSPIRE].ADSCrossRefGoogle Scholar
  61. [61]
    ALPHA collaboration, M. Guagnelli, J. Heitger, R. Sommer and H. Wittig, Hadron masses and matrix elements from the QCD Schrödinger functional, Nucl. Phys. B 560 (1999) 465 [hep-lat/9903040] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2015

Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • Mattia Bruno
    • 1
  • Dalibor Djukanovic
    • 2
  • Georg P. Engel
    • 3
  • Anthony Francis
    • 2
  • Gregorio Herdoiza
    • 4
  • Hanno Horch
    • 5
  • Piotr Korcyl
    • 1
  • Tomasz Korzec
    • 6
  • Mauro Papinutto
    • 7
  • Stefan Schaefer
    • 1
    Email author
  • Enno E. Scholz
    • 8
  • Jakob Simeth
    • 8
  • Hubert Simma
    • 1
  • Wolfgang Söldner
    • 8
  1. 1.John von Neumann Institute for Computing (NIC), DESYZeuthenGermany
  2. 2.Helmholtz Institute MainzUniversity of MainzMainzGermany
  3. 3.Dipartimento di FisicaUniversità di Milano-Bicocca, and INFN, Sezione di Milano-BicoccaMilanoItaly
  4. 4.Departamento de Física Teórica and Instituto de Física Teórica UAM/CSICUniversidad Autónoma de MadridMadridSpain
  5. 5.PRISMA Cluster of Excellence, Institut für KernphysikJohannes Gutenberg Universität MainzMainzGermany
  6. 6.Institut für Physik, Humboldt UniversitätBerlinGermany
  7. 7.Dipartimento di Fisica“Sapienza” Università di Roma, and INFN, Sezione di RomaRomaItaly
  8. 8.Institut für Theoretische PhysikUniversität RegensburgRegensburgGermany

Personalised recommendations