Skip to main content

Mass effects in the Higgs-gluon coupling: boosted vs. off-shell production

A preprint version of the article is available at arXiv.

Abstract

In the upcoming LHC run we will be able to probe the structure of the loopinduced Higgs-gluon coupling through kinematics. First, we establish state-of-the-art simulations with up to two jets to next-to-leading order including top mass effects. They allow us to search for deviations from the low-energy limits in boosted Higgs production. In addition, the size of the top mass effects suggests that they should generally be included in Higgs studies at the LHC. Next, we show how off-shell Higgs production with a decay to four leptons is sensitive to the same top mass effects. We compare the potential of both methods based on the same top-Higgs Lagrangian. Finally, we comment on related model assumptions required for a Higgs width measurement.

References

  1. P.W. Higgs, Broken symmetries, massless particles and gauge fields, Phys. Lett. 12 (1964) 132 [INSPIRE].

    ADS  Google Scholar 

  2. P.W. Higgs, Broken Symmetries and the Masses of Gauge Bosons, Phys. Rev. Lett. 13 (1964) 508 [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  3. P.W. Higgs, Spontaneous Symmetry Breakdown without Massless Bosons, Phys. Rev. 145 (1966) 1156 [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  4. F. Englert and R. Brout, Broken Symmetry and the Mass of Gauge Vector Mesons, Phys. Rev. Lett. 13 (1964) 321 [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  5. G.S. Guralnik, C.R. Hagen and T.W.B. Kibble, Global Conservation Laws and Massless Particles, Phys. Rev. Lett. 13 (1964) 585 [INSPIRE].

    ADS  Google Scholar 

  6. ATLAS collaboration, Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].

    ADS  Google Scholar 

  7. CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].

    ADS  Google Scholar 

  8. M. Klute, R. Lafaye, T. Plehn, M. Rauch and D. Zerwas, Measuring Higgs Couplings from LHC Data, Phys. Rev. Lett. 109 (2012) 101801 [arXiv:1205.2699] [INSPIRE].

    ADS  Google Scholar 

  9. D. López-Val, T. Plehn and M. Rauch, Measuring Extended Higgs Sectors as a Consistent Free Couplings Model, JHEP 10 (2013) 134 [arXiv:1308.1979] [INSPIRE].

    ADS  Google Scholar 

  10. ATLAS collaboration, An update of combined measurements of the new Higgs-like boson with high mass resolution channels, ATLAS-CONF-2012-170 (2012).

  11. CMS collaboration, Combination of standard model Higgs boson searches and measurements of the properties of the new boson with a mass near 125 GeV, CMS-PAS-HIG-12-045.

  12. A. Azatov, R. Contino and J. Galloway, Model-Independent Bounds on a Light Higgs, JHEP 04 (2012) 127 [Erratum ibid. 1304 (2013) 140] [arXiv:1202.3415] [INSPIRE].

  13. P.P. Giardino, K. Kannike, M. Raidal and A. Strumia, Is the resonance at 125 GeV the Higgs boson?, Phys. Lett. B 718 (2012) 469 [arXiv:1207.1347] [INSPIRE].

    ADS  Google Scholar 

  14. J.R. Espinosa, C. Grojean, M. Muhlleitner and M. Trott, First Glimpses at Higgsface, JHEP 12 (2012) 045 [arXiv:1207.1717] [INSPIRE].

    ADS  Google Scholar 

  15. A. Djouadi and G. Moreau, The couplings of the Higgs boson and its CP properties from fits of the signal strengths and their ratios at the 7 + 8 TeV LHC, Eur. Phys. J. C 73 (2013) 2512 [arXiv:1303.6591] [INSPIRE].

    ADS  Google Scholar 

  16. J. Ellis and T. You, Updated Global Analysis of Higgs Couplings, JHEP 06 (2013) 103 [arXiv:1303.3879] [INSPIRE].

    ADS  Google Scholar 

  17. P. Bechtle, S. Heinemeyer, O. Stål, T. Stefaniak and G. Weiglein, HiggsSignals: Confronting arbitrary Higgs sectors with measurements at the Tevatron and the LHC, Eur. Phys. J. C 74 (2014) 2711 [arXiv:1305.1933] [INSPIRE].

    ADS  Google Scholar 

  18. A. Azatov and J. Galloway, Electroweak Symmetry Breaking and the Higgs Boson: Confronting Theories at Colliders, Int. J. Mod. Phys. A 28 (2013) 1330004 [arXiv:1212.1380] [INSPIRE].

    ADS  Google Scholar 

  19. I. Brivio et al., Disentangling a dynamical Higgs, JHEP 03 (2014) 024 [arXiv:1311.1823] [INSPIRE].

    ADS  Google Scholar 

  20. R. Contino, M. Ghezzi, C. Grojean, M. Muhlleitner and M. Spira, Effective Lagrangian for a light Higgs-like scalar, JHEP 07 (2013) 035 [arXiv:1303.3876] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  21. J. Elias-Miro, J.R. Espinosa, E. Masso and A. Pomarol, Higgs windows to new physics through D = 6 operators: constraints and one-loop anomalous dimensions, JHEP 11 (2013) 066 [arXiv:1308.1879] [INSPIRE].

    ADS  Google Scholar 

  22. C. Englert et al., Precision Measurements of Higgs Couplings: Implications for New Physics Scales, J. Phys. G 41 (2014) 113001 [arXiv:1403.7191] [INSPIRE].

    ADS  Google Scholar 

  23. J. Ellis, V. Sanz and T. You, Complete Higgs Sector Constraints on Dimension-6 Operators, JHEP 07 (2014) 036 [arXiv:1404.3667] [INSPIRE].

    ADS  Google Scholar 

  24. S. Dawson, I.M. Lewis and M. Zeng, Effective field theory for Higgs boson plus jet production, Phys. Rev. D 90 (2014) 093007 [arXiv:1409.6299] [INSPIRE].

    ADS  Google Scholar 

  25. A. Belyaev and L. Reina, pp\( t\overline{t}H \) , Hτ + τ : Toward a model independent determination of the Higgs boson couplings at the LHC, JHEP 08 (2002) 041 [hep-ph/0205270] [INSPIRE].

    ADS  Google Scholar 

  26. E. Gross and L. Zivkovic, \( t\overline{t}H\to t\overline{t}{\tau}^{+}{\tau}^{-} \) : Toward the Measurement of the top-Yukawa Coupling, Eur. Phys. J. C 59 (2009) 731 [INSPIRE].

    ADS  Google Scholar 

  27. T. Plehn, G.P. Salam and M. Spannowsky, Fat Jets for a Light Higgs, Phys. Rev. Lett. 104 (2010) 111801 [arXiv:0910.5472] [INSPIRE].

    ADS  Google Scholar 

  28. C. Boddy, S. Farrington and C. Hays, Higgs boson coupling sensitivity at the LHC using H-¿tau tau decays, Phys. Rev. D 86 (2012) 073009 [arXiv:1208.0769] [INSPIRE].

    ADS  Google Scholar 

  29. P. Artoisenet, P. de Aquino, F. Maltoni and O. Mattelaer, Unravelling tth via the Matrix Element Method, Phys. Rev. Lett. 111 (2013) 091802 [arXiv:1304.6414] [INSPIRE].

    ADS  Google Scholar 

  30. P. Agrawal, S. Bandyopadhyay and S.P. Das, Dilepton Signatures of the Higgs Boson with Tau-jet Tagging, arXiv:1308.6511 [INSPIRE].

  31. M.R. Buckley, T. Plehn, T. Schell and M. Takeuchi, Buckets of Higgs and Tops, JHEP 02 (2014) 130 [arXiv:1310.6034] [INSPIRE].

    ADS  Google Scholar 

  32. M. Farina, C. Grojean, F. Maltoni, E. Salvioni and A. Thamm, Lifting degeneracies in Higgs couplings using single top production in association with a Higgs boson, JHEP 05 (2013) 022 [arXiv:1211.3736] [INSPIRE].

    ADS  Google Scholar 

  33. S. Biswas, E. Gabrielli, F. Margaroli and B. Mele, Direct constraints on the top-Higgs coupling from the 8 TeV LHC data, JHEP 07 (2013) 073 [arXiv:1304.1822] [INSPIRE].

    ADS  Google Scholar 

  34. J. Ellis, D.S. Hwang, K. Sakurai and M. Takeuchi, Disentangling Higgs-Top Couplings in Associated Production, JHEP 04 (2014) 004 [arXiv:1312.5736] [INSPIRE].

    ADS  Google Scholar 

  35. C. Englert and E. Re, Bounding the top Yukawa coupling with Higgs-associated single-top production, Phys. Rev. D 89 (2014) 073020 [arXiv:1402.0445] [INSPIRE].

    ADS  Google Scholar 

  36. W.J. Stirling and D.J. Summers, Production of an intermediate mass Higgs boson in association with a single top quark at LHC and SSC, Phys. Lett. B 283 (1992) 411 [INSPIRE].

    ADS  Google Scholar 

  37. F. Maltoni, D.L. Rainwater and S. Willenbrock, Measuring the top quark Yukawa coupling at hadron colliders via \( t\overline{t}H \) , HW + W , Phys. Rev. D 66 (2002) 034022 [hep-ph/0202205] [INSPIRE].

    ADS  Google Scholar 

  38. D.E. Morrissey, T. Plehn and T.M.P. Tait, Physics searches at the LHC, Phys. Rept. 515 (2012) 1 [arXiv:0912.3259] [INSPIRE].

    ADS  Google Scholar 

  39. J.R. Ellis, M.K. Gaillard and D.V. Nanopoulos, A Phenomenological Profile of the Higgs Boson, Nucl. Phys. B 106 (1976) 292 [INSPIRE].

    ADS  Google Scholar 

  40. M.A. Shifman, A.I. Vainshtein, M.B. Voloshin and V.I. Zakharov, Low-Energy Theorems for Higgs Boson Couplings to Photons, Sov. J. Nucl. Phys. 30 (1979) 711 [INSPIRE].

    Google Scholar 

  41. B.A. Kniehl and M. Spira, Low-energy theorems in Higgs physics, Z. Phys. C 69 (1995) 77 [hep-ph/9505225] [INSPIRE].

    Google Scholar 

  42. T. Plehn, Lectures on LHC Physics, Lect. Notes Phys. 844 (2012) 1 [arXiv:0910.4182] [INSPIRE].

    Google Scholar 

  43. D. Graudenz, M. Spira and P.M. Zerwas, QCD corrections to Higgs boson production at proton proton colliders, Phys. Rev. Lett. 70 (1993) 1372 [INSPIRE].

    ADS  Google Scholar 

  44. M. Spira, A. Djouadi, D. Graudenz and P.M. Zerwas, Higgs boson production at the LHC, Nucl. Phys. B 453 (1995) 17 [hep-ph/9504378] [INSPIRE].

    ADS  Google Scholar 

  45. M. Krämer, E. Laenen and M. Spira, Soft gluon radiation in Higgs boson production at the LHC, Nucl. Phys. B 511 (1998) 523 [hep-ph/9611272] [INSPIRE].

    ADS  Google Scholar 

  46. S. Marzani, R.D. Ball, V. Del Duca, S. Forte and A. Vicini, Higgs production via gluon-gluon fusion with finite top mass beyond next-to-leading order, Nucl. Phys. B 800 (2008) 127 [arXiv:0801.2544] [INSPIRE].

    ADS  Google Scholar 

  47. A. Pak, M. Rogal and M. Steinhauser, Finite top quark mass effects in NNLO Higgs boson production at LHC, JHEP 02 (2010) 025 [arXiv:0911.4662] [INSPIRE].

    ADS  Google Scholar 

  48. M. Spira, QCD effects in Higgs physics, Fortsch. Phys. 46 (1998) 203 [hep-ph/9705337] [INSPIRE].

    ADS  MATH  Google Scholar 

  49. U. Baur, T. Plehn and D.L. Rainwater, Measuring the Higgs boson self coupling at the LHC and finite top mass matrix elements, Phys. Rev. Lett. 89 (2002) 151801 [hep-ph/0206024] [INSPIRE].

    ADS  Google Scholar 

  50. J. Grigo, J. Hoff, K. Melnikov and M. Steinhauser, On the Higgs boson pair production at the LHC, Nucl. Phys. B 875 (2013) 1 [arXiv:1305.7340] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  51. X. Li and M.B. Voloshin, Remarks on double Higgs boson production by gluon fusion at threshold, Phys. Rev. D 89 (2014) 013012 [arXiv:1311.5156] [INSPIRE].

    ADS  Google Scholar 

  52. R.K. Ellis, I. Hinchliffe, M. Soldate and J.J. van der Bij, Higgs Decay to τ + τ : A Possible Signature of Intermediate Mass Higgs Bosons at the SSC, Nucl. Phys. B 297 (1988) 221 [INSPIRE].

    ADS  Google Scholar 

  53. U. Baur and E.W.N. Glover, Higgs Boson Production at Large Transverse Momentum in Hadronic Collisions, Nucl. Phys. B 339 (1990) 38 [INSPIRE].

    ADS  Google Scholar 

  54. A. Banfi, A. Martin and V. Sanz, Probing top-partners in Higgs+jets, JHEP 08 (2014) 053 [arXiv:1308.4771] [INSPIRE].

    ADS  Google Scholar 

  55. A. Azatov and A. Paul, Probing Higgs couplings with high p T Higgs production, JHEP 01 (2014) 014 [arXiv:1309.5273] [INSPIRE].

    ADS  Google Scholar 

  56. C. Grojean, E. Salvioni, M. Schlaffer and A. Weiler, Very boosted Higgs in gluon fusion, JHEP 05 (2014) 022 [arXiv:1312.3317] [INSPIRE].

    ADS  Google Scholar 

  57. E. Bagnaschi, G. Degrassi, P. Slavich and A. Vicini, Higgs production via gluon fusion in the POWHEG approach in the SM and in the MSSM, JHEP 02 (2012) 088 [arXiv:1111.2854] [INSPIRE].

    ADS  Google Scholar 

  58. R.V. Harlander, T. Neumann, K.J. Ozeren and M. Wiesemann, Top-mass effects in differential Higgs production through gluon fusion at order α 4 s , JHEP 08 (2012) 139 [arXiv:1206.0157] [INSPIRE].

    ADS  Google Scholar 

  59. R.V. Harlander and T. Neumann, Probing the nature of the Higgs-gluon coupling, Phys. Rev. D 88 (2013) 074015 [arXiv:1308.2225] [INSPIRE].

    ADS  Google Scholar 

  60. C. Englert, M. McCullough and M. Spannowsky, Gluon-initiated associated production boosts Higgs physics, Phys. Rev. D 89 (2014) 013013 [arXiv:1310.4828] [INSPIRE].

    ADS  Google Scholar 

  61. M. Buschmann, C. Englert, D. Goncalves, T. Plehn and M. Spannowsky, Resolving the Higgs-Gluon Coupling with Jets, Phys. Rev. D 90 (2014) 013010 [arXiv:1405.7651] [INSPIRE].

    ADS  Google Scholar 

  62. D.S.M. Alves, M.R. Buckley, P.J. Fox, J.D. Lykken and C.-T. Yu, Stops and : The shape of things to come, Phys. Rev. D 87 (2013) 035016 [arXiv:1205.5805] [INSPIRE].

    ADS  Google Scholar 

  63. S. Bornhauser, M. Drees, S. Grab and J.S. Kim, Light Stop Searches at the LHC in Events with two b-Jets and Missing Energy, Phys. Rev. D 83 (2011) 035008 [arXiv:1011.5508] [INSPIRE].

    ADS  Google Scholar 

  64. N. Desai and B. Mukhopadhyaya, Constraints on supersymmetry with light third family from LHC data, JHEP 05 (2012) 057 [arXiv:1111.2830] [INSPIRE].

    ADS  Google Scholar 

  65. Z. Han, A. Katz, D. Krohn and M. Reece, (Light) Stop Signs, JHEP 08 (2012) 083 [arXiv:1205.5808] [INSPIRE].

    ADS  Google Scholar 

  66. G. Bélanger, R.M. Godbole, L. Hartgring and I. Niessen, Top Polarization in Stop Production at the LHC, JHEP 05 (2013) 167 [arXiv:1212.3526] [INSPIRE].

    ADS  Google Scholar 

  67. X.-Q. Li, Z.-G. Si, K. Wang, L. Wang, L. Zhang and G. Zhu, Light Top Squark in Precision Top Quark Sample, Phys. Rev. D 89 (2014) 077703 [arXiv:1311.6874] [INSPIRE].

    ADS  Google Scholar 

  68. M. Schlaffer, M. Spannowsky, M. Takeuchi, A. Weiler and C. Wymant, Boosted Higgs Shapes, Eur. Phys. J. C 74 (2014) 3120 [arXiv:1405.4295] [INSPIRE].

    ADS  Google Scholar 

  69. N. Kauer and G. Passarino, Inadequacy of zero-width approximation for a light Higgs boson signal, JHEP 08 (2012) 116 [arXiv:1206.4803] [INSPIRE].

    ADS  Google Scholar 

  70. F. Caola and K. Melnikov, Constraining the Higgs boson width with ZZ production at the LHC, Phys. Rev. D 88 (2013) 054024 [arXiv:1307.4935] [INSPIRE].

    ADS  Google Scholar 

  71. J.M. Campbell, R.K. Ellis and C. Williams, Bounding the Higgs width at the LHC using full analytic results for gge e + μ μ +, JHEP 04 (2014) 060 [arXiv:1311.3589] [INSPIRE].

    ADS  Google Scholar 

  72. J.M. Campbell, R.K. Ellis and C. Williams, Bounding the Higgs width at the LHC: complementary results from HW W , Phys. Rev. D 89 (2014) 053011 [arXiv:1312.1628] [INSPIRE].

    ADS  Google Scholar 

  73. CMS collaboration, Properties of the Higgs-like boson in the decay H to ZZ to 4l in pp collisions at \( \sqrt{s}=7 \) and 8 TeV, CMS-PAS-HIG-13-002.

  74. CMS collaboration, Constraints on the Higgs boson width from off-shell production and decay to Z-boson pairs, Phys. Lett. B 736 (2014) 64 [arXiv:1405.3455] [INSPIRE].

    Google Scholar 

  75. ATLAS collaboration, Determination of the off-shell Higgs boson signal strength in the high-mass ZZ final state with the ATLAS detector, ATLAS-CONF-2014-042 (2014).

  76. C. Englert and M. Spannowsky, Limitations and Opportunities of Off-Shell Coupling Measurements, Phys. Rev. D 90 (2014) 053003 [arXiv:1405.0285] [INSPIRE].

    ADS  Google Scholar 

  77. J.S. Gainer, J. Lykken, K.T. Matchev, S. Mrenna and M. Park, Beyond Geolocating: Constraining Higher Dimensional Operators in H → 4ℓ with Off-Shell Production and More, arXiv:1403.4951 [INSPIRE].

  78. E.W.N. Glover and J.J. van der Bij, Z boson pair production via gluon fusion, Nucl. Phys. B 321 (1989) 561 [INSPIRE].

    ADS  Google Scholar 

  79. A. Azatov, C. Grojean, A. Paul and E. Salvioni, Taming the off-shell Higgs boson, arXiv:1406.6338 [INSPIRE].

  80. G. Cacciapaglia, A. Deandrea, G. Drieu La Rochelle and J.-B. Flament, Higgs couplings: disentangling New Physics with off-shell measurements, Phys. Rev. Lett. 113 (2014) 201802 [arXiv:1406.1757] [INSPIRE].

    ADS  Google Scholar 

  81. T. Gleisberg et al., Event generation with SHERPA 1.1, JHEP 02 (2009) 007 [arXiv:0811.4622] [INSPIRE].

    ADS  Google Scholar 

  82. F. Krauss, R. Kuhn and G. Soff, AMEGIC++ 1.0: A matrix element generator in C++, JHEP 02 (2002) 044 [hep-ph/0109036] [INSPIRE].

    ADS  Google Scholar 

  83. S. Hoeche, F. Krauss, P. Maierhoefer, S. Pozzorini, M. Schonherr and F. Siegert, Next-to-leading order QCD predictions for top-quark pair production with up to two jets merged with a parton shower, arXiv:1402.6293 [INSPIRE].

  84. S. Hoeche, F. Krauss, S. Pozzorini, M. Schoenherr, J.M. Thompson and K.C. Zapp, Triple vector boson production through Higgs-Strahlung with NLO multijet merging, Phys. Rev. D 89 (2014) 093015 [arXiv:1403.7516] [INSPIRE].

    ADS  Google Scholar 

  85. S. Catani, F. Krauss, R. Kuhn and B.R. Webber, QCD matrix elements + parton showers, JHEP 11 (2001) 063 [hep-ph/0109231] [INSPIRE].

    ADS  Google Scholar 

  86. S. Hoeche, F. Krauss, S. Schumann and F. Siegert, QCD matrix elements and truncated showers, JHEP 05 (2009) 053 [arXiv:0903.1219] [INSPIRE].

    ADS  Google Scholar 

  87. S. Hoeche, F. Krauss, M. Schonherr and F. Siegert, QCD matrix elements + parton showers: The NLO case, JHEP 04 (2013) 027 [arXiv:1207.5030] [INSPIRE].

    ADS  Google Scholar 

  88. T. Gehrmann, S. Hoche, F. Krauss, M. Schonherr and F. Siegert, NLO QCD matrix elements + parton showers in e + e hadrons, JHEP 01 (2013) 144 [arXiv:1207.5031] [INSPIRE].

    ADS  Google Scholar 

  89. S. Hoeche, F. Krauss and M. Schonherr, Uncertainties in MEPS@NLO calculations of h+jets, Phys. Rev. D 90 (2014) 014012 [arXiv:1401.7971] [INSPIRE].

    ADS  Google Scholar 

  90. F. Cascioli, P. Maierhofer and S. Pozzorini, Scattering Amplitudes with Open Loops, Phys. Rev. Lett. 108 (2012) 111601 [arXiv:1111.5206] [INSPIRE].

    ADS  Google Scholar 

  91. A. Denner, S. Dittmaier and L. Hofer, COLLIERA fortran-library for one-loop integrals, PoS(LL2014)071 [arXiv:1407.0087] [INSPIRE].

  92. A. Denner and S. Dittmaier, Scalar one-loop 4-point integrals, Nucl. Phys. B 844 (2011) 199 [arXiv:1005.2076] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  93. A. Denner and S. Dittmaier, Reduction of one loop tensor five point integrals, Nucl. Phys. B 658 (2003) 175 [hep-ph/0212259] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  94. J. Alwall, Q. Li and F. Maltoni, Matched predictions for Higgs production via heavy-quark loops in the SM and beyond, Phys. Rev. D 85 (2012) 014031 [arXiv:1110.1728] [INSPIRE].

    ADS  Google Scholar 

  95. R. Frederix et al., Higgs pair production at the LHC with NLO and parton-shower effects, Phys. Lett. B 732 (2014) 142 [arXiv:1401.7340] [INSPIRE].

    ADS  Google Scholar 

  96. F. Maltoni, E. Vryonidou and M. Zaro, Top-quark mass effects in double and triple Higgs production in gluon-gluon fusion at NLO, JHEP 11 (2014) 079 [arXiv:1408.6542] [INSPIRE].

    ADS  Google Scholar 

  97. S. Frixione and B.R. Webber, Matching NLO QCD computations and parton shower simulations, JHEP 06 (2002) 029 [hep-ph/0204244] [INSPIRE].

    ADS  Google Scholar 

  98. S. Hoeche, F. Krauss, M. Schonherr and F. Siegert, A critical appraisal of NLO+PS matching methods, JHEP 09 (2012) 049 [arXiv:1111.1220] [INSPIRE].

    ADS  Google Scholar 

  99. S. Hoeche, F. Krauss, M. Schonherr and F. Siegert, W + n-jet predictions at the Large Hadron Collider at next-to-leading order matched with a parton shower, Phys. Rev. Lett. 110 (2013) 052001 [arXiv:1201.5882] [INSPIRE].

    ADS  Google Scholar 

  100. T. Sjöstrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 Physics and Manual, JHEP 05 (2006) 026 [hep-ph/0603175] [INSPIRE].

    ADS  Google Scholar 

  101. J. Alwall, M. Herquet, F. Maltoni, O. Mattelaer and T. Stelzer, MadGraph 5: Going Beyond, JHEP 06 (2011) 128 [arXiv:1106.0522] [INSPIRE].

    ADS  Google Scholar 

  102. J.M. Campbell, R.K. Ellis, R. Frederix, P. Nason, C. Oleari and C. Williams, NLO Higgs Boson Production Plus One and Two Jets Using the POWHEG BOX, MadGraph4 and MCFM, JHEP 07 (2012) 092 [arXiv:1202.5475] [INSPIRE].

    ADS  Google Scholar 

  103. J.M. Campbell, R.K. Ellis and C. Williams, MCFMMonte Carlo for FeMtobarn processes, http://mcfm.fnal.gov.

  104. F. Campanario, M. Kubocz and D. Zeppenfeld, Gluon-fusion contributions to Φ + 2 Jet production, Phys. Rev. D 84 (2011) 095025 [arXiv:1011.3819] [INSPIRE].

    ADS  Google Scholar 

  105. M. Cacciari, G.P. Salam and G. Soyez, The Anti-k t jet clustering algorithm, JHEP 04 (2008) 063 [arXiv:0802.1189] [INSPIRE].

    ADS  Google Scholar 

  106. M. Cacciari, G.P. Salam and G. Soyez, FastJet User Manual, Eur. Phys. J. C 72 (2012) 1896 [arXiv:1111.6097] [INSPIRE].

    ADS  Google Scholar 

  107. M. Grazzini and H. Sargsyan, Heavy-quark mass effects in Higgs boson production at the LHC, JHEP 09 (2013) 129 [arXiv:1306.4581] [INSPIRE].

    ADS  Google Scholar 

  108. M. Wiesemann, R. Frederix, S. Frixione, V. Hirschi, F. Maltoni and P. Torrielli, Higgs production in association with bottom quarks, arXiv:1409.5301 [INSPIRE].

  109. R.V. Harlander, H. Mantler and M. Wiesemann, Transverse momentum resummation for Higgs production via gluon fusion in the MSSM, JHEP 11 (2014) 116 [arXiv:1409.0531] [INSPIRE].

    ADS  Google Scholar 

  110. S. Catani and M.H. Seymour, A general algorithm for calculating jet cross-sections in NLO QCD, Nucl. Phys. B 485 (1997) 291 [Erratum ibid. B 510 (1998) 503] [hep-ph/9605323] [INSPIRE].

  111. S. Schumann and F. Krauss, A parton shower algorithm based on Catani-Seymour dipole factorisation, JHEP 03 (2008) 038 [arXiv:0709.1027] [INSPIRE].

    ADS  Google Scholar 

  112. T. Plehn, D.L. Rainwater and D. Zeppenfeld, Determining the structure of Higgs couplings at the LHC, Phys. Rev. Lett. 88 (2002) 051801 [hep-ph/0105325] [INSPIRE].

    ADS  Google Scholar 

  113. C. Ruwiedel, N. Wermes and M. Schumacher, Prospects for the measurement of the structure of the coupling of a Higgs boson to weak gauge bosons in weak boson fusion with the ATLAS detector, Eur. Phys. J. C 51 (2007) 385 [INSPIRE].

    ADS  Google Scholar 

  114. G. Klamke and D. Zeppenfeld, Higgs plus two jet production via gluon fusion as a signal at the CERN LHC, JHEP 04 (2007) 052 [hep-ph/0703202] [INSPIRE].

    ADS  Google Scholar 

  115. K. Hagiwara, Q. Li and K. Mawatari, Jet angular correlation in vector-boson fusion processes at hadron colliders, JHEP 07 (2009) 101 [arXiv:0905.4314] [INSPIRE].

    ADS  Google Scholar 

  116. C. Englert, D. Goncalves-Netto, K. Mawatari and T. Plehn, Higgs Quantum Numbers in Weak Boson Fusion, JHEP 01 (2013) 148 [arXiv:1212.0843] [INSPIRE].

    ADS  Google Scholar 

  117. C. Englert, D. Goncalves, G. Nail and M. Spannowsky, The shape of spins, Phys. Rev. D 88 (2013) 013016 [arXiv:1304.0033] [INSPIRE].

    ADS  Google Scholar 

  118. K. Hagiwara and S. Mukhopadhyay, Azimuthal correlation among jets produced in association with a bottom or top quark pair at the LHC, JHEP 05 (2013) 019 [arXiv:1302.0960] [INSPIRE].

    ADS  Google Scholar 

  119. M.R. Buckley, T. Plehn and M.J. Ramsey-Musolf, Top squark with mass close to the top quark, Phys. Rev. D 90 (2014) 014046 [arXiv:1403.2726] [INSPIRE].

    ADS  Google Scholar 

  120. J. Pumplin, D.R. Stump, J. Huston, H.L. Lai, P.M. Nadolsky and W.K. Tung, New generation of parton distributions with uncertainties from global QCD analysis, JHEP 07 (2002) 012 [hep-ph/0201195] [INSPIRE].

    ADS  Google Scholar 

  121. G. Passarino, Higgs CAT, Eur. Phys. J. C 74 (2014) 2866 [arXiv:1312.2397] [INSPIRE].

    ADS  Google Scholar 

  122. M. Bonvini, F. Caola, S. Forte, K. Melnikov and G. Ridolfi, Signal-background interference effects for ggHW + W beyond leading order, Phys. Rev. D 88 (2013) 034032 [arXiv:1304.3053] [INSPIRE].

    ADS  Google Scholar 

  123. N. Cabibbo and A. Maksymowicz, Angular Correlations in Ke 4 Decays and Determination of Low-Energy ππ Phase Shifts, Phys. Rev. 137 (1965) B438 [Erratum ibid. 168 (1968) 1926] [INSPIRE].

  124. J.R. Dell’Aquila and C.A. Nelson, P or CP Determination by Sequential Decays: V 1 V 2 Modes With Decays Into \( {\overline{\ell}}_A{\ell}_B \) And/or \( {\overline{q}}_A{q}_B \) , Phys. Rev. D 33 (1986) 80 [INSPIRE].

    ADS  Google Scholar 

  125. J.R. Dell’Aquila and C.A. Nelson, Distinguishing a Spin 0 Technipion and an Elementary Higgs Boson: V 1 V 2 Modes With Decays Into \( {\overline{\ell}}_A{\ell}_B \) And/or \( {\overline{q}}_A{q}_B \), Phys. Rev. D 33 (1986) 93 [INSPIRE].

    ADS  Google Scholar 

  126. C.A. Nelson, Correlation Between Decay Planes in Higgs Boson Decays Into W Pair (Into Z Pair), Phys. Rev. D 37 (1988) 1220 [INSPIRE].

    ADS  Google Scholar 

  127. M. Klute, R. Lafaye, T. Plehn, M. Rauch and D. Zerwas, Measuring Higgs Couplings at a Linear Collider, Europhys. Lett. 101 (2013) 51001 [arXiv:1301.1322] [INSPIRE].

    ADS  Google Scholar 

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dorival Gonçalves.

Additional information

ArXiv ePrint: 1410.5806

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Buschmann, M., Gonçalves, D., Kuttimalai, S. et al. Mass effects in the Higgs-gluon coupling: boosted vs. off-shell production. J. High Energ. Phys. 2015, 38 (2015). https://doi.org/10.1007/JHEP02(2015)038

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP02(2015)038

Keywords

  • QCD Phenomenology
  • Phenomenological Models