P.W. Higgs, Broken symmetries, massless particles and gauge fields, Phys. Lett.
12 (1964) 132 [INSPIRE].
ADS
Google Scholar
P.W. Higgs, Broken Symmetries and the Masses of Gauge Bosons, Phys. Rev. Lett.
13 (1964) 508 [INSPIRE].
ADS
MathSciNet
Google Scholar
P.W. Higgs, Spontaneous Symmetry Breakdown without Massless Bosons, Phys. Rev.
145 (1966) 1156 [INSPIRE].
ADS
MathSciNet
Google Scholar
F. Englert and R. Brout, Broken Symmetry and the Mass of Gauge Vector Mesons, Phys. Rev. Lett.
13 (1964) 321 [INSPIRE].
ADS
MathSciNet
Google Scholar
G.S. Guralnik, C.R. Hagen and T.W.B. Kibble, Global Conservation Laws and Massless Particles, Phys. Rev. Lett.
13 (1964) 585 [INSPIRE].
ADS
Google Scholar
ATLAS collaboration, Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett.
B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].
ADS
Google Scholar
CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett.
B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].
ADS
Google Scholar
M. Klute, R. Lafaye, T. Plehn, M. Rauch and D. Zerwas, Measuring Higgs Couplings from LHC Data, Phys. Rev. Lett.
109 (2012) 101801 [arXiv:1205.2699] [INSPIRE].
ADS
Google Scholar
D. López-Val, T. Plehn and M. Rauch, Measuring Extended Higgs Sectors as a Consistent Free Couplings Model, JHEP
10 (2013) 134 [arXiv:1308.1979] [INSPIRE].
ADS
Google Scholar
ATLAS collaboration, An update of combined measurements of the new Higgs-like boson with high mass resolution channels, ATLAS-CONF-2012-170 (2012).
CMS collaboration, Combination of standard model Higgs boson searches and measurements of the properties of the new boson with a mass near 125 GeV, CMS-PAS-HIG-12-045.
A. Azatov, R. Contino and J. Galloway, Model-Independent Bounds on a Light Higgs, JHEP
04 (2012) 127 [Erratum ibid.
1304 (2013) 140] [arXiv:1202.3415] [INSPIRE].
P.P. Giardino, K. Kannike, M. Raidal and A. Strumia, Is the resonance at 125 GeV the Higgs boson?, Phys. Lett.
B 718 (2012) 469 [arXiv:1207.1347] [INSPIRE].
ADS
Google Scholar
J.R. Espinosa, C. Grojean, M. Muhlleitner and M. Trott, First Glimpses at Higgs’ face, JHEP
12 (2012) 045 [arXiv:1207.1717] [INSPIRE].
ADS
Google Scholar
A. Djouadi and G. Moreau, The couplings of the Higgs boson and its CP properties from fits of the signal strengths and their ratios at the 7 + 8 TeV LHC, Eur. Phys. J.
C 73 (2013) 2512 [arXiv:1303.6591] [INSPIRE].
ADS
Google Scholar
J. Ellis and T. You, Updated Global Analysis of Higgs Couplings, JHEP
06 (2013) 103 [arXiv:1303.3879] [INSPIRE].
ADS
Google Scholar
P. Bechtle, S. Heinemeyer, O. Stål, T. Stefaniak and G. Weiglein, HiggsSignals: Confronting arbitrary Higgs sectors with measurements at the Tevatron and the LHC, Eur. Phys. J.
C 74 (2014) 2711 [arXiv:1305.1933] [INSPIRE].
ADS
Google Scholar
A. Azatov and J. Galloway, Electroweak Symmetry Breaking and the Higgs Boson: Confronting Theories at Colliders, Int. J. Mod. Phys.
A 28 (2013) 1330004 [arXiv:1212.1380] [INSPIRE].
ADS
Google Scholar
I. Brivio et al., Disentangling a dynamical Higgs, JHEP
03 (2014) 024 [arXiv:1311.1823] [INSPIRE].
ADS
Google Scholar
R. Contino, M. Ghezzi, C. Grojean, M. Muhlleitner and M. Spira, Effective Lagrangian for a light Higgs-like scalar, JHEP
07 (2013) 035 [arXiv:1303.3876] [INSPIRE].
ADS
MathSciNet
Google Scholar
J. Elias-Miro, J.R. Espinosa, E. Masso and A. Pomarol, Higgs windows to new physics through D = 6 operators: constraints and one-loop anomalous dimensions, JHEP
11 (2013) 066 [arXiv:1308.1879] [INSPIRE].
ADS
Google Scholar
C. Englert et al., Precision Measurements of Higgs Couplings: Implications for New Physics Scales, J. Phys.
G 41 (2014) 113001 [arXiv:1403.7191] [INSPIRE].
ADS
Google Scholar
J. Ellis, V. Sanz and T. You, Complete Higgs Sector Constraints on Dimension-6 Operators, JHEP
07 (2014) 036 [arXiv:1404.3667] [INSPIRE].
ADS
Google Scholar
S. Dawson, I.M. Lewis and M. Zeng, Effective field theory for Higgs boson plus jet production, Phys. Rev.
D 90 (2014) 093007 [arXiv:1409.6299] [INSPIRE].
ADS
Google Scholar
A. Belyaev and L. Reina, pp → \( t\overline{t}H \)
, H → τ
+
τ
−
: Toward a model independent determination of the Higgs boson couplings at the LHC, JHEP
08 (2002) 041 [hep-ph/0205270] [INSPIRE].
ADS
Google Scholar
E. Gross and L. Zivkovic, \( t\overline{t}H\to t\overline{t}{\tau}^{+}{\tau}^{-} \)
: Toward the Measurement of the top-Yukawa Coupling, Eur. Phys. J.
C 59 (2009) 731 [INSPIRE].
ADS
Google Scholar
T. Plehn, G.P. Salam and M. Spannowsky, Fat Jets for a Light Higgs, Phys. Rev. Lett.
104 (2010) 111801 [arXiv:0910.5472] [INSPIRE].
ADS
Google Scholar
C. Boddy, S. Farrington and C. Hays, Higgs boson coupling sensitivity at the LHC using H-¿tau tau decays, Phys. Rev.
D 86 (2012) 073009 [arXiv:1208.0769] [INSPIRE].
ADS
Google Scholar
P. Artoisenet, P. de Aquino, F. Maltoni and O. Mattelaer, Unravelling tth via the Matrix Element Method, Phys. Rev. Lett.
111 (2013) 091802 [arXiv:1304.6414] [INSPIRE].
ADS
Google Scholar
P. Agrawal, S. Bandyopadhyay and S.P. Das, Dilepton Signatures of the Higgs Boson with Tau-jet Tagging, arXiv:1308.6511 [INSPIRE].
M.R. Buckley, T. Plehn, T. Schell and M. Takeuchi, Buckets of Higgs and Tops, JHEP
02 (2014) 130 [arXiv:1310.6034] [INSPIRE].
ADS
Google Scholar
M. Farina, C. Grojean, F. Maltoni, E. Salvioni and A. Thamm, Lifting degeneracies in Higgs couplings using single top production in association with a Higgs boson, JHEP
05 (2013) 022 [arXiv:1211.3736] [INSPIRE].
ADS
Google Scholar
S. Biswas, E. Gabrielli, F. Margaroli and B. Mele, Direct constraints on the top-Higgs coupling from the 8 TeV LHC data, JHEP
07 (2013) 073 [arXiv:1304.1822] [INSPIRE].
ADS
Google Scholar
J. Ellis, D.S. Hwang, K. Sakurai and M. Takeuchi, Disentangling Higgs-Top Couplings in Associated Production, JHEP
04 (2014) 004 [arXiv:1312.5736] [INSPIRE].
ADS
Google Scholar
C. Englert and E. Re, Bounding the top Yukawa coupling with Higgs-associated single-top production, Phys. Rev.
D 89 (2014) 073020 [arXiv:1402.0445] [INSPIRE].
ADS
Google Scholar
W.J. Stirling and D.J. Summers, Production of an intermediate mass Higgs boson in association with a single top quark at LHC and SSC, Phys. Lett.
B 283 (1992) 411 [INSPIRE].
ADS
Google Scholar
F. Maltoni, D.L. Rainwater and S. Willenbrock, Measuring the top quark Yukawa coupling at hadron colliders via
\( t\overline{t}H \)
, H → W
+
W
−, Phys. Rev.
D 66 (2002) 034022 [hep-ph/0202205] [INSPIRE].
ADS
Google Scholar
D.E. Morrissey, T. Plehn and T.M.P. Tait, Physics searches at the LHC, Phys. Rept.
515 (2012) 1 [arXiv:0912.3259] [INSPIRE].
ADS
Google Scholar
J.R. Ellis, M.K. Gaillard and D.V. Nanopoulos, A Phenomenological Profile of the Higgs Boson, Nucl. Phys.
B 106 (1976) 292 [INSPIRE].
ADS
Google Scholar
M.A. Shifman, A.I. Vainshtein, M.B. Voloshin and V.I. Zakharov, Low-Energy Theorems for Higgs Boson Couplings to Photons, Sov. J. Nucl. Phys.
30 (1979) 711 [INSPIRE].
Google Scholar
B.A. Kniehl and M. Spira, Low-energy theorems in Higgs physics, Z. Phys.
C 69 (1995) 77 [hep-ph/9505225] [INSPIRE].
Google Scholar
T. Plehn, Lectures on LHC Physics, Lect. Notes Phys.
844 (2012) 1 [arXiv:0910.4182] [INSPIRE].
Google Scholar
D. Graudenz, M. Spira and P.M. Zerwas, QCD corrections to Higgs boson production at proton proton colliders, Phys. Rev. Lett.
70 (1993) 1372 [INSPIRE].
ADS
Google Scholar
M. Spira, A. Djouadi, D. Graudenz and P.M. Zerwas, Higgs boson production at the LHC, Nucl. Phys.
B 453 (1995) 17 [hep-ph/9504378] [INSPIRE].
ADS
Google Scholar
M. Krämer, E. Laenen and M. Spira, Soft gluon radiation in Higgs boson production at the LHC, Nucl. Phys.
B 511 (1998) 523 [hep-ph/9611272] [INSPIRE].
ADS
Google Scholar
S. Marzani, R.D. Ball, V. Del Duca, S. Forte and A. Vicini, Higgs production via gluon-gluon fusion with finite top mass beyond next-to-leading order, Nucl. Phys.
B 800 (2008) 127 [arXiv:0801.2544] [INSPIRE].
ADS
Google Scholar
A. Pak, M. Rogal and M. Steinhauser, Finite top quark mass effects in NNLO Higgs boson production at LHC, JHEP
02 (2010) 025 [arXiv:0911.4662] [INSPIRE].
ADS
Google Scholar
M. Spira, QCD effects in Higgs physics, Fortsch. Phys.
46 (1998) 203 [hep-ph/9705337] [INSPIRE].
ADS
MATH
Google Scholar
U. Baur, T. Plehn and D.L. Rainwater, Measuring the Higgs boson self coupling at the LHC and finite top mass matrix elements, Phys. Rev. Lett.
89 (2002) 151801 [hep-ph/0206024] [INSPIRE].
ADS
Google Scholar
J. Grigo, J. Hoff, K. Melnikov and M. Steinhauser, On the Higgs boson pair production at the LHC, Nucl. Phys.
B 875 (2013) 1 [arXiv:1305.7340] [INSPIRE].
ADS
MathSciNet
Google Scholar
X. Li and M.B. Voloshin, Remarks on double Higgs boson production by gluon fusion at threshold, Phys. Rev.
D 89 (2014) 013012 [arXiv:1311.5156] [INSPIRE].
ADS
Google Scholar
R.K. Ellis, I. Hinchliffe, M. Soldate and J.J. van der Bij, Higgs Decay to τ
+
τ
−
: A Possible Signature of Intermediate Mass Higgs Bosons at the SSC, Nucl. Phys.
B 297 (1988) 221 [INSPIRE].
ADS
Google Scholar
U. Baur and E.W.N. Glover, Higgs Boson Production at Large Transverse Momentum in Hadronic Collisions, Nucl. Phys.
B 339 (1990) 38 [INSPIRE].
ADS
Google Scholar
A. Banfi, A. Martin and V. Sanz, Probing top-partners in Higgs+jets, JHEP
08 (2014) 053 [arXiv:1308.4771] [INSPIRE].
ADS
Google Scholar
A. Azatov and A. Paul, Probing Higgs couplings with high p
T
Higgs production, JHEP
01 (2014) 014 [arXiv:1309.5273] [INSPIRE].
ADS
Google Scholar
C. Grojean, E. Salvioni, M. Schlaffer and A. Weiler, Very boosted Higgs in gluon fusion, JHEP
05 (2014) 022 [arXiv:1312.3317] [INSPIRE].
ADS
Google Scholar
E. Bagnaschi, G. Degrassi, P. Slavich and A. Vicini, Higgs production via gluon fusion in the POWHEG approach in the SM and in the MSSM, JHEP
02 (2012) 088 [arXiv:1111.2854] [INSPIRE].
ADS
Google Scholar
R.V. Harlander, T. Neumann, K.J. Ozeren and M. Wiesemann, Top-mass effects in differential Higgs production through gluon fusion at order α
4
s
, JHEP
08 (2012) 139 [arXiv:1206.0157] [INSPIRE].
ADS
Google Scholar
R.V. Harlander and T. Neumann, Probing the nature of the Higgs-gluon coupling, Phys. Rev.
D 88 (2013) 074015 [arXiv:1308.2225] [INSPIRE].
ADS
Google Scholar
C. Englert, M. McCullough and M. Spannowsky, Gluon-initiated associated production boosts Higgs physics, Phys. Rev.
D 89 (2014) 013013 [arXiv:1310.4828] [INSPIRE].
ADS
Google Scholar
M. Buschmann, C. Englert, D. Goncalves, T. Plehn and M. Spannowsky, Resolving the Higgs-Gluon Coupling with Jets, Phys. Rev.
D 90 (2014) 013010 [arXiv:1405.7651] [INSPIRE].
ADS
Google Scholar
D.S.M. Alves, M.R. Buckley, P.J. Fox, J.D. Lykken and C.-T. Yu, Stops and
: The shape of things to come, Phys. Rev.
D 87 (2013) 035016 [arXiv:1205.5805] [INSPIRE].
ADS
Google Scholar
S. Bornhauser, M. Drees, S. Grab and J.S. Kim, Light Stop Searches at the LHC in Events with two b-Jets and Missing Energy, Phys. Rev.
D 83 (2011) 035008 [arXiv:1011.5508] [INSPIRE].
ADS
Google Scholar
N. Desai and B. Mukhopadhyaya, Constraints on supersymmetry with light third family from LHC data, JHEP
05 (2012) 057 [arXiv:1111.2830] [INSPIRE].
ADS
Google Scholar
Z. Han, A. Katz, D. Krohn and M. Reece, (Light) Stop Signs, JHEP
08 (2012) 083 [arXiv:1205.5808] [INSPIRE].
ADS
Google Scholar
G. Bélanger, R.M. Godbole, L. Hartgring and I. Niessen, Top Polarization in Stop Production at the LHC, JHEP
05 (2013) 167 [arXiv:1212.3526] [INSPIRE].
ADS
Google Scholar
X.-Q. Li, Z.-G. Si, K. Wang, L. Wang, L. Zhang and G. Zhu, Light Top Squark in Precision Top Quark Sample, Phys. Rev.
D 89 (2014) 077703 [arXiv:1311.6874] [INSPIRE].
ADS
Google Scholar
M. Schlaffer, M. Spannowsky, M. Takeuchi, A. Weiler and C. Wymant, Boosted Higgs Shapes, Eur. Phys. J.
C 74 (2014) 3120 [arXiv:1405.4295] [INSPIRE].
ADS
Google Scholar
N. Kauer and G. Passarino, Inadequacy of zero-width approximation for a light Higgs boson signal, JHEP
08 (2012) 116 [arXiv:1206.4803] [INSPIRE].
ADS
Google Scholar
F. Caola and K. Melnikov, Constraining the Higgs boson width with ZZ production at the LHC, Phys. Rev.
D 88 (2013) 054024 [arXiv:1307.4935] [INSPIRE].
ADS
Google Scholar
J.M. Campbell, R.K. Ellis and C. Williams, Bounding the Higgs width at the LHC using full analytic results for gg → e
−
e
+
μ
−
μ
+, JHEP
04 (2014) 060 [arXiv:1311.3589] [INSPIRE].
ADS
Google Scholar
J.M. Campbell, R.K. Ellis and C. Williams, Bounding the Higgs width at the LHC: complementary results from H → W W , Phys. Rev.
D 89 (2014) 053011 [arXiv:1312.1628] [INSPIRE].
ADS
Google Scholar
CMS collaboration, Properties of the Higgs-like boson in the decay H to ZZ to 4l in pp collisions at
\( \sqrt{s}=7 \)
and 8 TeV, CMS-PAS-HIG-13-002.
CMS collaboration, Constraints on the Higgs boson width from off-shell production and decay to Z-boson pairs, Phys. Lett.
B 736 (2014) 64 [arXiv:1405.3455] [INSPIRE].
Google Scholar
ATLAS collaboration, Determination of the off-shell Higgs boson signal strength in the high-mass ZZ final state with the ATLAS detector, ATLAS-CONF-2014-042 (2014).
C. Englert and M. Spannowsky, Limitations and Opportunities of Off-Shell Coupling Measurements, Phys. Rev.
D 90 (2014) 053003 [arXiv:1405.0285] [INSPIRE].
ADS
Google Scholar
J.S. Gainer, J. Lykken, K.T. Matchev, S. Mrenna and M. Park, Beyond Geolocating: Constraining Higher Dimensional Operators in H → 4ℓ with Off-Shell Production and More, arXiv:1403.4951 [INSPIRE].
E.W.N. Glover and J.J. van der Bij, Z boson pair production via gluon fusion, Nucl. Phys.
B 321 (1989) 561 [INSPIRE].
ADS
Google Scholar
A. Azatov, C. Grojean, A. Paul and E. Salvioni, Taming the off-shell Higgs boson, arXiv:1406.6338 [INSPIRE].
G. Cacciapaglia, A. Deandrea, G. Drieu La Rochelle and J.-B. Flament, Higgs couplings: disentangling New Physics with off-shell measurements, Phys. Rev. Lett.
113 (2014) 201802 [arXiv:1406.1757] [INSPIRE].
ADS
Google Scholar
T. Gleisberg et al., Event generation with SHERPA 1.1, JHEP
02 (2009) 007 [arXiv:0811.4622] [INSPIRE].
ADS
Google Scholar
F. Krauss, R. Kuhn and G. Soff, AMEGIC++ 1.0: A matrix element generator in C++, JHEP
02 (2002) 044 [hep-ph/0109036] [INSPIRE].
ADS
Google Scholar
S. Hoeche, F. Krauss, P. Maierhoefer, S. Pozzorini, M. Schonherr and F. Siegert, Next-to-leading order QCD predictions for top-quark pair production with up to two jets merged with a parton shower, arXiv:1402.6293 [INSPIRE].
S. Hoeche, F. Krauss, S. Pozzorini, M. Schoenherr, J.M. Thompson and K.C. Zapp, Triple vector boson production through Higgs-Strahlung with NLO multijet merging, Phys. Rev.
D 89 (2014) 093015 [arXiv:1403.7516] [INSPIRE].
ADS
Google Scholar
S. Catani, F. Krauss, R. Kuhn and B.R. Webber, QCD matrix elements + parton showers, JHEP
11 (2001) 063 [hep-ph/0109231] [INSPIRE].
ADS
Google Scholar
S. Hoeche, F. Krauss, S. Schumann and F. Siegert, QCD matrix elements and truncated showers, JHEP
05 (2009) 053 [arXiv:0903.1219] [INSPIRE].
ADS
Google Scholar
S. Hoeche, F. Krauss, M. Schonherr and F. Siegert, QCD matrix elements + parton showers: The NLO case, JHEP
04 (2013) 027 [arXiv:1207.5030] [INSPIRE].
ADS
Google Scholar
T. Gehrmann, S. Hoche, F. Krauss, M. Schonherr and F. Siegert, NLO QCD matrix elements + parton showers in e
+
e
− → hadrons, JHEP
01 (2013) 144 [arXiv:1207.5031] [INSPIRE].
ADS
Google Scholar
S. Hoeche, F. Krauss and M. Schonherr, Uncertainties in MEPS@NLO calculations of h+jets, Phys. Rev.
D 90 (2014) 014012 [arXiv:1401.7971] [INSPIRE].
ADS
Google Scholar
F. Cascioli, P. Maierhofer and S. Pozzorini, Scattering Amplitudes with Open Loops, Phys. Rev. Lett.
108 (2012) 111601 [arXiv:1111.5206] [INSPIRE].
ADS
Google Scholar
A. Denner, S. Dittmaier and L. Hofer, COLLIER — A fortran-library for one-loop integrals, PoS(LL2014)071 [arXiv:1407.0087] [INSPIRE].
A. Denner and S. Dittmaier, Scalar one-loop 4-point integrals, Nucl. Phys.
B 844 (2011) 199 [arXiv:1005.2076] [INSPIRE].
ADS
MathSciNet
Google Scholar
A. Denner and S. Dittmaier, Reduction of one loop tensor five point integrals, Nucl. Phys.
B 658 (2003) 175 [hep-ph/0212259] [INSPIRE].
ADS
MathSciNet
Google Scholar
J. Alwall, Q. Li and F. Maltoni, Matched predictions for Higgs production via heavy-quark loops in the SM and beyond, Phys. Rev.
D 85 (2012) 014031 [arXiv:1110.1728] [INSPIRE].
ADS
Google Scholar
R. Frederix et al., Higgs pair production at the LHC with NLO and parton-shower effects, Phys. Lett.
B 732 (2014) 142 [arXiv:1401.7340] [INSPIRE].
ADS
Google Scholar
F. Maltoni, E. Vryonidou and M. Zaro, Top-quark mass effects in double and triple Higgs production in gluon-gluon fusion at NLO, JHEP
11 (2014) 079 [arXiv:1408.6542] [INSPIRE].
ADS
Google Scholar
S. Frixione and B.R. Webber, Matching NLO QCD computations and parton shower simulations, JHEP
06 (2002) 029 [hep-ph/0204244] [INSPIRE].
ADS
Google Scholar
S. Hoeche, F. Krauss, M. Schonherr and F. Siegert, A critical appraisal of NLO+PS matching methods, JHEP
09 (2012) 049 [arXiv:1111.1220] [INSPIRE].
ADS
Google Scholar
S. Hoeche, F. Krauss, M. Schonherr and F. Siegert, W + n-jet predictions at the Large Hadron Collider at next-to-leading order matched with a parton shower, Phys. Rev. Lett.
110 (2013) 052001 [arXiv:1201.5882] [INSPIRE].
ADS
Google Scholar
T. Sjöstrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 Physics and Manual, JHEP
05 (2006) 026 [hep-ph/0603175] [INSPIRE].
ADS
Google Scholar
J. Alwall, M. Herquet, F. Maltoni, O. Mattelaer and T. Stelzer, MadGraph 5: Going Beyond, JHEP
06 (2011) 128 [arXiv:1106.0522] [INSPIRE].
ADS
Google Scholar
J.M. Campbell, R.K. Ellis, R. Frederix, P. Nason, C. Oleari and C. Williams, NLO Higgs Boson Production Plus One and Two Jets Using the POWHEG BOX, MadGraph4 and MCFM, JHEP
07 (2012) 092 [arXiv:1202.5475] [INSPIRE].
ADS
Google Scholar
J.M. Campbell, R.K. Ellis and C. Williams, MCFM — Monte Carlo for FeMtobarn processes, http://mcfm.fnal.gov.
F. Campanario, M. Kubocz and D. Zeppenfeld, Gluon-fusion contributions to Φ + 2 Jet production, Phys. Rev.
D 84 (2011) 095025 [arXiv:1011.3819] [INSPIRE].
ADS
Google Scholar
M. Cacciari, G.P. Salam and G. Soyez, The Anti-k
t
jet clustering algorithm, JHEP
04 (2008) 063 [arXiv:0802.1189] [INSPIRE].
ADS
Google Scholar
M. Cacciari, G.P. Salam and G. Soyez, FastJet User Manual, Eur. Phys. J.
C 72 (2012) 1896 [arXiv:1111.6097] [INSPIRE].
ADS
Google Scholar
M. Grazzini and H. Sargsyan, Heavy-quark mass effects in Higgs boson production at the LHC, JHEP
09 (2013) 129 [arXiv:1306.4581] [INSPIRE].
ADS
Google Scholar
M. Wiesemann, R. Frederix, S. Frixione, V. Hirschi, F. Maltoni and P. Torrielli, Higgs production in association with bottom quarks, arXiv:1409.5301 [INSPIRE].
R.V. Harlander, H. Mantler and M. Wiesemann, Transverse momentum resummation for Higgs production via gluon fusion in the MSSM, JHEP
11 (2014) 116 [arXiv:1409.0531] [INSPIRE].
ADS
Google Scholar
S. Catani and M.H. Seymour, A general algorithm for calculating jet cross-sections in NLO QCD, Nucl. Phys.
B 485 (1997) 291 [Erratum ibid.
B 510 (1998) 503] [hep-ph/9605323] [INSPIRE].
S. Schumann and F. Krauss, A parton shower algorithm based on Catani-Seymour dipole factorisation, JHEP
03 (2008) 038 [arXiv:0709.1027] [INSPIRE].
ADS
Google Scholar
T. Plehn, D.L. Rainwater and D. Zeppenfeld, Determining the structure of Higgs couplings at the LHC, Phys. Rev. Lett.
88 (2002) 051801 [hep-ph/0105325] [INSPIRE].
ADS
Google Scholar
C. Ruwiedel, N. Wermes and M. Schumacher, Prospects for the measurement of the structure of the coupling of a Higgs boson to weak gauge bosons in weak boson fusion with the ATLAS detector, Eur. Phys. J.
C 51 (2007) 385 [INSPIRE].
ADS
Google Scholar
G. Klamke and D. Zeppenfeld, Higgs plus two jet production via gluon fusion as a signal at the CERN LHC, JHEP
04 (2007) 052 [hep-ph/0703202] [INSPIRE].
ADS
Google Scholar
K. Hagiwara, Q. Li and K. Mawatari, Jet angular correlation in vector-boson fusion processes at hadron colliders, JHEP
07 (2009) 101 [arXiv:0905.4314] [INSPIRE].
ADS
Google Scholar
C. Englert, D. Goncalves-Netto, K. Mawatari and T. Plehn, Higgs Quantum Numbers in Weak Boson Fusion, JHEP
01 (2013) 148 [arXiv:1212.0843] [INSPIRE].
ADS
Google Scholar
C. Englert, D. Goncalves, G. Nail and M. Spannowsky, The shape of spins, Phys. Rev.
D 88 (2013) 013016 [arXiv:1304.0033] [INSPIRE].
ADS
Google Scholar
K. Hagiwara and S. Mukhopadhyay, Azimuthal correlation among jets produced in association with a bottom or top quark pair at the LHC, JHEP
05 (2013) 019 [arXiv:1302.0960] [INSPIRE].
ADS
Google Scholar
M.R. Buckley, T. Plehn and M.J. Ramsey-Musolf, Top squark with mass close to the top quark, Phys. Rev.
D 90 (2014) 014046 [arXiv:1403.2726] [INSPIRE].
ADS
Google Scholar
J. Pumplin, D.R. Stump, J. Huston, H.L. Lai, P.M. Nadolsky and W.K. Tung, New generation of parton distributions with uncertainties from global QCD analysis, JHEP
07 (2002) 012 [hep-ph/0201195] [INSPIRE].
ADS
Google Scholar
G. Passarino, Higgs CAT, Eur. Phys. J.
C 74 (2014) 2866 [arXiv:1312.2397] [INSPIRE].
ADS
Google Scholar
M. Bonvini, F. Caola, S. Forte, K. Melnikov and G. Ridolfi, Signal-background interference effects for gg → H → W
+
W
−
beyond leading order, Phys. Rev.
D 88 (2013) 034032 [arXiv:1304.3053] [INSPIRE].
ADS
Google Scholar
N. Cabibbo and A. Maksymowicz, Angular Correlations in Ke
4
Decays and Determination of Low-Energy π − π Phase Shifts, Phys. Rev.
137 (1965) B438 [Erratum ibid.
168 (1968) 1926] [INSPIRE].
J.R. Dell’Aquila and C.A. Nelson, P or CP Determination by Sequential Decays: V
1
V
2
Modes With Decays Into
\( {\overline{\ell}}_A{\ell}_B \)
And/or
\( {\overline{q}}_A{q}_B \) , Phys. Rev.
D 33 (1986) 80 [INSPIRE].
ADS
Google Scholar
J.R. Dell’Aquila and C.A. Nelson, Distinguishing a Spin 0 Technipion and an Elementary Higgs Boson: V
1
V
2
Modes With Decays Into
\( {\overline{\ell}}_A{\ell}_B \)
And/or
\( {\overline{q}}_A{q}_B \), Phys. Rev.
D 33 (1986) 93 [INSPIRE].
ADS
Google Scholar
C.A. Nelson, Correlation Between Decay Planes in Higgs Boson Decays Into W Pair (Into Z Pair), Phys. Rev.
D 37 (1988) 1220 [INSPIRE].
ADS
Google Scholar
M. Klute, R. Lafaye, T. Plehn, M. Rauch and D. Zerwas, Measuring Higgs Couplings at a Linear Collider, Europhys. Lett.
101 (2013) 51001 [arXiv:1301.1322] [INSPIRE].
ADS
Google Scholar