Journal of High Energy Physics

, 2014:57 | Cite as

DELPHES 3: a modular framework for fast simulation of a generic collider experiment

  • The DELPHES 3 collaboration
  • J. de Favereau
  • C. Delaere
  • P. Demin
  • A. Giammanco
  • V. Lemaître
  • A. Mertens
  • M. SelvaggiEmail author
Open Access


The version 3.0 of the Delphes fast-simulation is presented. The goal of Delphes is to allow the simulation of a multipurpose detector for phenomenological studies. The simulation includes a track propagation system embedded in a magnetic field, electromagnetic and hadron calorimeters, and a muon identification system. Physics objects that can be used for data analysis are then reconstructed from the simulated detector response. These include tracks and calorimeter deposits and high level objects such as isolated electrons, jets, taus, and missing energy. The new modular approach allows for greater flexibility in the design of the simulation and reconstruction sequence. New features such as the particle-flow reconstruction approach, crucial in the first years of the LHC, and pile-up simulation and mitigation, which is needed for the simulation of the LHC detectors in the near future, have also been implemented. The Delphes framework is not meant to be used for advanced detector studies, for which more accurate tools are needed. Although some aspects of Delphes are hadron collider specific, it is flexible enough to be adapted to the needs of electron-positron collider experiments.


Hadron-Hadron Scattering 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    J. Allison, K. Amako, J. Apostolakis, H. Araujo, P. Dubois et al., Geant4 developments and applications, IEEE Trans. Nucl. Sci. 53 (2006) 270 [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    ATLAS collaboration, The ATLAS Fast Track Simulation Project, ATL-SOFT-PROC-2011-038 (2011).
  3. [3]
    ATLAS collaboration, W. Lukas, Fast Simulation for ATLAS: Atlfast-II and ISF, J. Phys. Conf. Ser. 396 (2012) 022031 [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    R. Rahmat, R. Kroeger and A. Giammanco, The fast simulation of the CMS experiment, J. Phys. Conf. Ser. 396 (2012) 062016 [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    CMS collaboration, S. Abdullin, P. Azzi, F. Beaudette, P. Janot and A. Perrotta, The fast simulation of the CMS detector at LHC, J. Phys. Conf. Ser. 331 (2011) 032049 [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    CMS collaboration, Comparison of the Fast Simulation of CMS with the first LHC data, CMS-DP-2010-039 (2010).
  7. [7]
    S. Ovyn, X. Rouby and V. Lemaitre, DELPHES, a framework for fast simulation of a generic collider experiment, arXiv:0903.2225 [INSPIRE].
  8. [8]
    ALEPH collaboration, D. Buskulic et al., Performance of the ALEPH detector at LEP, Nucl. Instrum. Meth. A 360 (1995) 481 [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    CMS collaboration, Particle-Flow Event Reconstruction in CMS and Performance for Jets, Taus and MET, CMS-PAS-PFT-09-001.
  10. [10]
    Particle Data Group collaboration, J. Beringer et al., Review of Particle Physics (RPP), Phys. Rev. D 86 (2012) 010001 [INSPIRE].ADSGoogle Scholar
  11. [11]
    M. Cacciari, G.P. Salam and G. Soyez, FastJet User Manual, Eur. Phys. J. C 72 (2012) 1896 [arXiv:1111.6097] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    M. Cacciari, G.P. Salam and G. Soyez, The Catchment Area of Jets, JHEP 04 (2008) 005 [arXiv:0802.1188] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    M. Cacciari and G.P. Salam, Pileup subtraction using jet areas, Phys. Lett. B 659 (2008) 119 [arXiv:0707.1378] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    CMS collaboration, CMS Physics: Technical Design Report Volume 1: Detector Performance and Software, CERN-LHCC-2006-001.
  15. [15]
    ATLAS collaboration, Expected Performance of the ATLAS Experiment - Detector, Trigger and Physics, arXiv:0901.0512 [INSPIRE].
  16. [16]
    J. Alwall, M. Herquet, F. Maltoni, O. Mattelaer and T. Stelzer, MadGraph 5 : Going Beyond, JHEP 06 (2011) 128 [arXiv:1106.0522] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    T. Sjöstrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 Physics and Manual, JHEP 05 (2006) 026 [hep-ph/0603175] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    S. Catani, F. Krauss, R. Kuhn and B. Webber, QCD matrix elements + parton showers, JHEP 11 (2001) 063 [hep-ph/0109231] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    CMS collaboration, Performance of CMS muon reconstruction in pp collision events at \( \sqrt{s} \) = 7 TeV,2012JINST 7P10002[arXiv:1206.4071] [INSPIRE].
  20. [20]
    ATLAS collaboration, Expected Performance of the ATLAS Experiment - Detector, Trigger and Physics, arXiv:0901.0512 [INSPIRE].
  21. [21]
    CMS collaboration, Electron performance with 19.6 fb −1 of data collected at \( \sqrt{s} \) = 8 TeV with the CMS detector., CMS-DP-2013-003 (2013).
  22. [22]
    M. Cacciari, G.P. Salam and G. Soyez, The Anti-k(t) jet clustering algorithm, JHEP 04 (2008) 063 [arXiv:0802.1189] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    ATLAS collaboration, Jet energy resolution in proton-proton collisions at \( \sqrt{s} \) = 7 TeV recorded in 2010 with the ATLAS detector, Eur. Phys. J. C 73 (2013) 2306 [arXiv:1210.6210] [INSPIRE].ADSGoogle Scholar
  24. [24]
    ATLAS collaboration, Performance of Missing Transverse Momentum Reconstruction in ATLAS with 2011 Proton-Proton Collisions at sqrts = 7 TeV, ATLAS-CONF-2012-101 (2012).
  25. [25]
    ATLAS collaboration, Performance of the ATLAS Inner Detector Track and Vertex Reconstruction in the High Pile-Up LHC Environment, ATLAS-CONF-2012-042 (2012).
  26. [26]
    CMS collaboration, Measurement of the top-quark mass in \( t\overline{t} \) events with lepton+jets final states in pp collisions at \( \sqrt{s} \) = 7 TeV, JHEP 12 (2012) 105 [arXiv:1209.2319] [INSPIRE].ADSGoogle Scholar
  27. [27]
  28. [28]
    CMS collaboration, b-Jet Identification in the CMS Experiment, CMS-PAS-BTV-11-004.
  29. [29]
    T. Sjöstrand, S. Mrenna and P.Z. Skands, A Brief Introduction to PYTHIA 8.1, Comput. Phys. Commun. 178 (2008) 852 [arXiv:0710.3820] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  30. [30]
    I. Antcheva, M. Ballintijn, B. Bellenot, M. Biskup, R. Brun et al., ROOT: A C++ framework for petabyte data storage, statistical analysis and visualization, Comput. Phys. Commun. 180 (2009) 2499 [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
  32. [32]
    S. Chekanov, Next generation input-output data format for HEP using Googles protocol buffers, arXiv:1306.6675 [INSPIRE].
  33. [33]
    M. Dobbs and J.B. Hansen, The HepMC C++ Monte Carlo event record for High Energy Physics, Comput. Phys. Commun. 134 (2001) 41 [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    L. Garren, P. Lebrun, StdHep User Manual,
  35. [35]
    J. Alwall, A. Ballestrero, P. Bartalini, S. Belov, E. Boos et al., A Standard format for Les Houches event files, Comput. Phys. Commun. 176 (2007) 300 [hep-ph/0609017] [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
  37. [37]
    A. Giammanco, The CMS Fast Simulation, J. Phys.: Conf. Ser., submitted.Google Scholar

Copyright information

© The Author(s) 2014

Authors and Affiliations

  • The DELPHES 3 collaboration
  • J. de Favereau
    • 1
  • C. Delaere
    • 1
  • P. Demin
    • 1
  • A. Giammanco
    • 1
  • V. Lemaître
    • 1
  • A. Mertens
    • 1
  • M. Selvaggi
    • 1
    Email author
  1. 1.Centre for Cosmology, Particle Physics and Phenomenology (CP3)Université Catholique de LouvainLouvain-la-NeuveBelgium

Personalised recommendations