Abstract
We argue that the following three statements cannot all be true: (i) Hawking radiation is in a pure state, (ii) the information carried by the radiation is emitted from the region near the horizon, with low energy effective field theory valid beyond some microscopic distance from the horizon, and (iii) the infalling observer encounters nothing unusual at the horizon. Perhaps the most conservative resolution is that the infalling observer burns up at the horizon. Alternatives would seem to require novel dynamics that nevertheless cause notable violations of semiclassical physics at macroscopic distances from the horizon.
This is a preview of subscription content, access via your institution.
References
S. Hawking, Breakdown of predictability in gravitational collapse, Phys. Rev. D 14 (1976) 2460 [INSPIRE].
L. Susskind, L. Thorlacius and J. Uglum, The stretched horizon and black hole complementarity, Phys. Rev. D 48 (1993) 3743 [hep-th/9306069] [INSPIRE].
C.R. Stephens, G. ’t Hooft and B.F. Whiting, Black hole evaporation without information loss, Class. Quant. Grav. 11 (1994) 621 [gr-qc/9310006] [INSPIRE].
L. Susskind and L. Thorlacius, Gedanken experiments involving black holes, Phys. Rev. D 49 (1994) 966 [hep-th/9308100] [INSPIRE].
J. Preskill, unpublished, quoted in ref. [2].
D.-H. Yeom and H. Zoe, Semi-classical black holes with large-N re-scaling and information loss problem, Int. J. Mod. Phys. A 26 (2011) 3287 [arXiv:0907.0677] [INSPIRE].
P. Hayden and J. Preskill, Black holes as mirrors: quantum information in random subsystems, JHEP 09 (2007) 120 [arXiv:0708.4025] [INSPIRE].
Y. Sekino and L. Susskind, Fast scramblers, JHEP 10 (2008) 065 [arXiv:0808.2096] [INSPIRE].
J.L. Barbon and J.M. Magan, Chaotic fast scrambling at black holes, Phys. Rev. D 84 (2011) 106012 [arXiv:1105.2581] [INSPIRE].
N. Lashkari, D. Stanford, M. Hastings, T. Osborne and P. Hayden, Towards the fast scrambling conjecture, arXiv:1111.6580 [INSPIRE].
S.B. Giddings, Models for unitary black hole disintegration, Phys. Rev. D 85 (2012) 044038 [arXiv:1108.2015] [INSPIRE].
S.B. Giddings, Black holes, quantum information and unitary evolution, Phys. Rev. D 85 (2012) 124063 [arXiv:1201.1037] [INSPIRE].
S.B. Giddings and Y. Shi, Quantum information transfer and models for black hole mechanics, arXiv:1205.4732 [INSPIRE].
S.D. Mathur, The information paradox: a pedagogical introduction, Class. Quant. Grav. 26 (2009) 224001 [arXiv:0909.1038] [INSPIRE].
S.D. Mathur, The information paradox and the infall problem, Class. Quant. Grav. 28 (2011) 125010 [arXiv:1012.2101] [INSPIRE].
S.D. Mathur and C.J. Plumberg, Correlations in Hawking radiation and the infall problem, JHEP 09 (2011) 093 [arXiv:1101.4899] [INSPIRE].
S.D. Mathur, What the information paradox is not, arXiv:1108.0302 [INSPIRE].
B. Czech, K. Larjo and M. Rozali, Black holes as Rubik’s cubes, JHEP 08 (2011) 143 [arXiv:1106.5229] [INSPIRE].
S.G. Avery, Qubit models of black hole evaporation, arXiv:1109.2911 [INSPIRE].
S.D. Mathur, Black holes and beyond, Annals Phys. 327 (2012) 2760 [arXiv:1205.0776] [INSPIRE].
D.N. Page, Average entropy of a subsystem, Phys. Rev. Lett. 71 (1993) 1291 [gr-qc/9305007] [INSPIRE].
D.N. Page, Black hole information, hep-th/9305040 [INSPIRE].
Y. Nomura, J. Varela and S.J. Weinberg, Complementarity endures: no firewall for an infalling observer, arXiv:1207.6626 [INSPIRE].
L. Susskind, Singularities, firewalls and complementarity, arXiv:1208.3445 [INSPIRE].
S. Hawking and D.N. Page, Thermodynamics of black holes in anti-de Sitter space, Commun. Math. Phys. 87 (1983) 577 [INSPIRE].
J.M. Maldacena, Eternal black holes in anti-de Sitter, JHEP 04 (2003) 021 [hep-th/0106112] [INSPIRE].
D. Marolf and A.C. Wall, Eternal black holes and superselection in AdS/CFT, Class. Quant. Grav. 30 (2013) 025001 [arXiv:1210.3590] [INSPIRE].
G. Chapline, E. Hohlfeld, R. Laughlin and D. Santiago, Quantum phase transitions and the breakdown of classical general relativity, Int. J. Mod. Phys. A 18 (2003) 3587 [gr-qc/0012094] [INSPIRE].
P.O. Mazur and E. Mottola, Gravitational condensate stars: an alternative to black holes, gr-qc/0109035 [INSPIRE].
A. Davidson, Holographic shell model: stack data structure inside black holes, arXiv:1108.2650 [INSPIRE].
S.D. Mathur and D. Turton, Comments on black holes I: the possibility of complementarity, arXiv:1208.2005 [INSPIRE].
D.N. Page, Particle emission rates from a black hole: massless particles from an uncharged, nonrotating hole, Phys. Rev. D 13 (1976) 198 [INSPIRE].
W. Unruh and R.M. Wald, Acceleration radiation and generalized second law of thermodynamics, Phys. Rev. D 25 (1982) 942 [INSPIRE].
W.G. Unruh and R. Wald, How to mine energy from a black hole, Gen. Rel. Grav. 15 (1983) 195.
W. Unruh and R.M. Wald, Entropy bounds, acceleration radiation, and the generalized second law, Phys. Rev. D 27 (1983) 2271 [INSPIRE].
A.R. Brown, Tensile strength and the mining of black holes, arXiv:1207.3342 [INSPIRE].
B. Czech, J.L. Karczmarek, F. Nogueira and M. Van Raamsdonk, Rindler quantum gravity, Class. Quant. Grav. 29 (2012) 235025 [arXiv:1206.1323] [INSPIRE].
N. Itzhaki, Is the black hole complementarity principle really necessary?, hep-th/9607028 [INSPIRE].
D.A. Lowe and L. Thorlacius, Comments on the black hole information problem, Phys. Rev. D 73 (2006) 104027 [hep-th/0601059] [INSPIRE].
S. Hawking, Particle creation by black holes, Commun. Math. Phys. 43 (1975) 199 [Erratum ibid. 46 (1976) 206] [INSPIRE].
G.T. Horowitz and J.M. Maldacena, The black hole final state, JHEP 02 (2004) 008 [hep-th/0310281] [INSPIRE].
S. Corley and T. Jacobson, Lattice black holes, Phys. Rev. D 57 (1998) 6269 [hep-th/9709166] [INSPIRE].
T. Jacobson and D. Mattingly, Hawking radiation on a falling lattice, Phys. Rev. D 61 (2000) 024017 [hep-th/9908099] [INSPIRE].
T. Jacobson, Trans Planckian redshifts and the substance of the space-time river, Prog. Theor. Phys. Suppl. 136 (1999) 1 [hep-th/0001085] [INSPIRE].
A.E. Lawrence and E.J. Martinec, Black hole evaporation along macroscopic strings, Phys. Rev. D 50 (1994) 2680 [hep-th/9312127] [INSPIRE].
V.P. Frolov and D. Fursaev, Mining energy from a black hole by strings, Phys. Rev. D 63 (2001) 124010 [hep-th/0012260] [INSPIRE].
R. Price, K. Thorne and D.A. MacDonald eds., Black holes: the membrane paradigm, section VII.E.1, Yale University Press, New Haven U.S.A. (1986).
A.J. Amsel, D. Marolf and A. Virmani, The physical process first law for bifurcate killing horizons, Phys. Rev. D 77 (2008) 024011 [arXiv:0708.2738] [INSPIRE].
B. Carter, The general theory of mechanical, electromagnetic and thermodynamic properties of black holes, in General relativity: an Einstein centenary survey, S.W. Hawking and W. Israel eds., Cambridge University Press, Cambridge U.K. (1979).
R.M. Wald, Quantum field theory in curved spacetime and black hole thermodynamics, University of Chicago Press, Chicago U.S.A. (1994).
T. Jacobson, On the nature of black hole entropy, in General relativity and relativistic astrophysics: eighth Canadian conference, C.P. Burgess and R.C. Myers eds., AIP Conf. Proc. 493 (2000) 85 [gr-qc/9908031] [INSPIRE].
B.S. DeWitt, The Everett-Wheeler interpretation of quantum mechanics, in Battelle rencontres, 1967 lectures in mathematics and physics, C. DeWitt and J.A. Wheeler eds., W.A. Benjamin Inc., New York U.S.A. (1968).
J.B. Hartle, Quantum mechanics of individual systems, Am. J. Phys. 36 (1968) 704.
T. Banks, private communication.
M. Srednicki, private communication.
R. Bousso, Complementarity is not enough, arXiv:1207.5192 [INSPIRE].
D. Harlow, Complementarity, not firewalls, arXiv:1207.6243.
B.D. Chowdhury and A. Puhm, Is Alice burning or fuzzing?, arXiv:1208.2026 [INSPIRE].
Author information
Authors and Affiliations
Corresponding author
Additional information
ArXiv ePrint: 1207.3123
Rights and permissions
About this article
Cite this article
Almheiri, A., Marolf, D., Polchinski, J. et al. Black holes: complementarity or firewalls?. J. High Energ. Phys. 2013, 62 (2013). https://doi.org/10.1007/JHEP02(2013)062
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/JHEP02(2013)062