Skip to main content
Log in

The effect of gravitational tidal forces on renormalized quantum fields

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

The effect of gravitational tidal forces on renormalized quantum fields propagating in curved spacetime is investigated and a generalisation of the optical theorem to curved spacetime is proved. In the case of QED, the interaction of tidal forces with the vacuum polarization cloud of virtual e + e pairs dressing the renormalized photon has been shown to produce several novel phenomena. In particular, the photon field amplitude can locally increase as well as decrease, corresponding to a negative imaginary part of the refractive index, in apparent violation of unitarity and the optical theorem. Below threshold decays into e + e pairs may also occur. In this paper, these issues are studied from the point of view of a non-equilibrium initial-value problem, with the field evolution from an initial null surface being calculated for physically distinct initial conditions and for both scalar field theories and QED. It is shown how a generalised version of the optical theorem, valid in curved spacetime, allows a local increase in amplitude while maintaining consistency with unitarity. The picture emerges of the field being dressed and undressed as it propagates through curved spacetime, with the local gravitational tidal forces determining the degree of dressing and hence the amplitude of the renormalized quantum field. These effects are illustrated with many examples, including a description of the undressing of a photon in the vicinity of a black hole singularity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T.J. Hollowood and G.M. Shore, Causality and Micro-Causality in Curved Spacetime, Phys. Lett. B 655 (2007) 67 [arXiv:0707.2302] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  2. T.J. Hollowood and G.M. Shore, The Refractive index of curved spacetime: The Fate of causality in QED, Nucl. Phys. B 795 (2008) 138 [arXiv:0707.2303] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  3. T.J. Hollowood and G.M. Shore, The Causal Structure of QED in Curved Spacetime: Analyticity and the Refractive Index, JHEP 12 (2008) 091 [arXiv:0806.1019] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  4. T.J. Hollowood, G.M. Shore and R.J. Stanley, The Refractive Index of Curved Spacetime II: QED, Penrose Limits and Black Holes, JHEP 08 (2009) 089 [arXiv:0905.0771] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  5. T.J. Hollowood and G.M. Shore, The Effect of Gravitational Tidal Forces on Vacuum Polarization: How to Undress a Photon, Phys. Lett. B 691 (2010) 279 [arXiv:1006.0145] [INSPIRE].

    ADS  Google Scholar 

  6. G. Shore, ‘Faster than lightphotons in gravitational fields: Causality, anomalies and horizons, Nucl. Phys. B 460 (1996) 379 [gr-qc/9504041] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  7. G. Shore, Causality and superluminal light, in Time and Matter, Proceedings of the International Colloquium on the Science of Time, I. Bigi and M. Faessler eds., World Scientific, Singapore (2006), [gr-qc/0302116] [INSPIRE].

  8. G.M. Shore, Quantum gravitational optics, Contemp. Phys. 44 (2003) 503 [gr-qc/0304059] [INSPIRE].

    Article  ADS  Google Scholar 

  9. G. Shore, Superluminality and UV completion, Nucl. Phys. B 778 (2007) 219 [hep-th/0701185] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  10. I. Drummond and S. Hathrell, QED Vacuum Polarization in a Background Gravitational Field and Its Effect on the Velocity of Photons, Phys. Rev. D 22 (1980) 343 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  11. R. Penrose, Any space-time has a plane wave as a limit, in Differential geometry and relativity, Reidel and Dordrecht (1976), pg. 271-275.

  12. M. Blau, M. Borunda, M. O’Loughlin and G. Papadopoulos, The Universality of Penrose limits near space-time singularities, JHEP 07 (2004) 068 [hep-th/0403252] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  13. M. Blau, D. Frank and S. Weiss, Fermi coordinates and Penrose limits, Class. Quant. Grav. 23 (2006) 3993 [hep-th/0603109] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  14. J.S. Schwinger, Brownian motion of a quantum oscillator, J. Math. Phys. 2 (1961) 407 [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  15. K.T. Mahanthappa, Multiple production of photons in quantum electrodynamics, Phys. Rev. 126 (1962) 329 [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  16. L.V. Keldysh, Diagram technique for nonequilibrium processes, Zh. Eksp. Teor. Fiz. 47 (1964) 1515 [Sov. Phys. JETP 20 (1965) 1018].

    Google Scholar 

  17. S. Weinberg, Quantum contributions to cosmological correlations, Phys. Rev. D 72 (2005) 043514 [hep-th/0506236] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  18. D. Boyanovsky and H. de Vega, Dynamical renormalization group approach to relaxation in quantum field theory, Annals Phys. 307 (2003) 335 [hep-ph/0302055] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  19. M. Cahen and N. Wallach, Lorentzian symmetric spaces, Bull. Am. Math. Soc. 76 (1970) 585.

    Article  MathSciNet  MATH  Google Scholar 

  20. D. Boyanovsky, R. Holman and S. Kumar, Inflaton decay in de Sitter space-time, Phys. Rev. D 56 (1997) 1958 [hep-ph/9606208] [INSPIRE].

    ADS  Google Scholar 

  21. D. Boyanovsky and H.J. de Vega, Particle decay in inflationary cosmology, Phys. Rev. D 70 (2004) 063508 [astro-ph/0406287] [INSPIRE].

    ADS  Google Scholar 

  22. D. Boyanovsky, H.J. de Vega and N.G. Sanchez, Particle decay during inflation: Self-decay of inflaton quantum fluctuations during slow roll, Phys. Rev. D 71 (2005) 023509 [astro-ph/0409406] [INSPIRE].

    ADS  Google Scholar 

  23. M. Blau, J.M. Figueroa-O’Farrill, C. Hull and G. Papadopoulos, A New maximally supersymmetric background of IIB superstring theory, JHEP 01 (2002) 047 [hep-th/0110242] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  24. M. Blau, J.M. Figueroa-O’Farrill, C. Hull and G. Papadopoulos, Penrose limits and maximal supersymmetry, Class. Quant. Grav. 19 (2002) L87 [hep-th/0201081] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  25. J.C. Plefka, Lectures on the plane wave string/gauge theory duality, Fortsch. Phys. 52 (2004) 264 [hep-th/0307101] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  26. G. Gibbons, Quantized Fields Propagating in Plane Wave Space-Times, Commun. Math. Phys. 45 (1975) 191 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  27. D. Brecher, J. Gregory and P. Saffin, String theory and the classical stability of plane waves, Phys. Rev. D 67 (2003) 045014 [hep-th/0210308] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  28. D. Marolf and L.A. Pando Zayas, On the singularity structure and stability of plane waves, JHEP 01 (2003) 076 [hep-th/0210309] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  29. J.A. Hutasoit, S. Kumar and J. Rafferty, Real time response on dS 3 : The Topological AdS Black Hole and the Bubble, JHEP 04 (2009) 063 [arXiv:0902.1658] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  30. R. Jordan, Effective Field Equations for Expectation Values, Phys. Rev. D 33 (1986) 444 [INSPIRE].

    ADS  Google Scholar 

  31. E. Calzetta and B. Hu, Closed Time Path Functional Formalism in Curved Space-Time: Application to Cosmological Back Reaction Problems, Phys. Rev. D 35 (1987) 495 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  32. E. Calzetta and B. Hu, Dissipation of quantum fields from particle creation, Phys. Rev. D 40 (1989) 656 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  33. A. Mironov, A. Morozov and T. Tomaras, Geodesic deviation and particle creation in curved spacetimes, arXiv:1108.2821 [INSPIRE].

  34. P. Szekeres and V. Iyer, Spherically symmetric singularities and strong cosmic censorship, Phys. Rev. D 47 (1993) 4362 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  35. M.-N. Celerier and P. Szekeres, Time-like and null focusing singularities in spherical symmetry: A Solution to the cosmological horizon problem and a challenge to the cosmic censorship hypothesis, Phys. Rev. D 65 (2002) 123516 [gr-qc/0203094] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  36. O. Nachtmann, Dynamic Stability in de Sitter Space, Osterr. Akad. Wiss., Math.-Naturw. Kl., Abt. II 176 (1968) 363.

    Google Scholar 

  37. N.P. Myhrvold, Runaway particle production in de Sitter space, Phys. Rev. D 28 (1983) 2439 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  38. J. Bros, H. Epstein and U. Moschella, Particle decays and stability on the de Sitter universe, Annales Henri Poincaré 11 (2010) 611 [arXiv:0812.3513] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  39. J. Bros, H. Epstein, M. Gaudin, U. Moschella and V. Pasquier, Triangular invariants, three-point functions and particle stability on the de Sitter universe, Commun. Math. Phys. 295 (2010) 261 [arXiv:0901.4223] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timothy J. Hollowood.

Additional information

ArXiv ePrint: 1111.3174

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hollowood, T.J., Shore, G.M. The effect of gravitational tidal forces on renormalized quantum fields. J. High Energ. Phys. 2012, 120 (2012). https://doi.org/10.1007/JHEP02(2012)120

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP02(2012)120

Keywords

Navigation