Skip to main content
Log in

Chiral reductions in the Salam-Sezgin model

Journal of High Energy Physics Aims and scope Submit manuscript

Cite this article

Abstract

Reductions from six to four spacetime dimensions are considered for a class of supergravity models based on the six-dimensional Salam-Sezgin model, which is a chiral theory with a gauged U(1) R R-symmetry and a positive scalar-field potential. Reduction on a sphere and monopole background of such models naturally yields four-dimensional theories without a cosmological constant. The question of chirality preservation in such a reduction has been a topic of debate. In this article, it is shown that the possibilities of dimensional reduction bifurcate into two separate consistent dimensional-reduction schemes. One of these retains the massless SU(2) vector gauge triplet arising from the sphere’s isometries, but it produces a non-chiral four-dimensional theory. The other consistent scheme sets to zero the SU(2) gauge fields, but retains the gauged U(1) R from six dimensions and preserves chirality although the U(1) R is spontaneously broken. Extensions of the Salam-Sezgin model to include larger gauge symmetries produce genuinely chiral models with unbroken gauge symmetries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  1. M. Duff, B. Nilsson and C. Pope, Kaluza-Klein supergravity, Phys. Rept. 130 (1986) 1 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  2. C. Hull and N. Warner, Noncompact gaugings from higher dimensions, Class. Quant. Grav. 5 (1988) 1517 [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  3. A. Salam and E. Sezgin, Chiral compactification on Minkowski x S 2 of N = 2 Einstein-Maxwell supergravity in six-dimensions, Phys. Lett. B 147 (1984) 47 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  4. M. Cvetič, G. Gibbons and C. Pope, A string and M-theory origin for the Salam-Sezgin model, Nucl. Phys. B 677 (2004) 164 [hep-th/0308026] [INSPIRE].

    Article  ADS  Google Scholar 

  5. Y. Aghababaie, C. Burgess, S. Parameswaran and F. Quevedo, Towards a naturally small cosmological constant from branes in 6 − D supergravity, Nucl. Phys. B 680 (2004) 389 [hep-th/0304256] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  6. S. Randjbar-Daemi, A. Salam, E. Sezgin and J. Strathdee, An anomaly free model in six-dimensions, Phys. Lett. B 151 (1985) 351 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  7. S. Ferrara, R. Minasian and A. Sagnotti, Low-energy analysis of M and F theories on Calabi-Yau threefolds, Nucl. Phys. B 474 (1996) 323 [hep-th/9604097] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  8. P. Hořava and E. Witten, Eleven-dimensional supergravity on a manifold with boundary, Nucl. Phys. B 475 (1996) 94 [hep-th/9603142] [INSPIRE].

    ADS  Google Scholar 

  9. T. Pugh, E. Sezgin and K. Stelle, D = 7/D = 6 heterotic supergravity with gauged R-symmetry, JHEP 02 (2011) 115 [arXiv:1008.0726] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  10. G. Gibbons and C. Pope, Consistent S 2 Pauli reduction of six-dimensional chiral gauged Einstein-Maxwell supergravity, Nucl. Phys. B 697 (2004) 225 [hep-th/0307052] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  11. H. Lü, C. Pope and K. Stelle, Consistent Pauli sphere reductions and the action, Nucl. Phys. B 782 (2007) 79 [hep-th/0611299] [INSPIRE].

    Article  ADS  Google Scholar 

  12. H. Nishino and E. Sezgin, The complete N = 2, D = 6 supergravity with matter and Yang-Mills couplings, Nucl. Phys. B 278 (1986) 353 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  13. H. Nishino and E. Sezgin, New couplings of six-dimensional supergravity, Nucl. Phys. B 505 (1997) 497 [hep-th/9703075] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  14. R. Percacci and E. Sezgin, Properties of gauged σ-models, hep-th/9810183 [INSPIRE].

  15. S.L. Cacciatori, F.D. Piazza and A. Scotti, E 7 groups from octonionic magic square, arXiv:1007.4758 [INSPIRE].

  16. C. Wetterich, Chirality index and dimensional reduction of fermions, Nucl. Phys. B 223 (1983) 109 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  17. E. Witten, Fermion quantum numbers in Kaluza-Klein theory, in Shelter Island II: proceedings of the 1983 Shelter Island Conference on Quantum Field Theory and the Fundamental Problems of Physics, New York U.S.A. 1-2 June 1983, MIT Press, Cambridge U.S.A. (1985).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. G. Pugh.

Additional information

ArXiv ePrint: 1108.6011

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Pope, C.N., Pugh, T.G. & Stelle, K.S. Chiral reductions in the Salam-Sezgin model. J. High Energ. Phys. 2012, 98 (2012). https://doi.org/10.1007/JHEP02(2012)098

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP02(2012)098

Keywords

Navigation