Skip to main content

Axion monodromy in a model of holographic gluodynamics

Abstract

The low energy field theory for N type IIA D4-branes at strong ’t Hooft coupling, wrapped on a circle with antiperiodic boundary conditions for fermions, is known to have a vacuum energy which depends on the θ angle for the gauge fields, and which is a multivalued function of this angle. This gives a field-theoretic realization of “axion monodromy” for a nondynamical axion. We construct the supergravity solution dual to the field theory in the metastable state which is the adiabatic continuation of the vacuum to large values of θ. We compute the energy of this state and show that it initially rises quadratically and then flattens out. We show that the glueball mass decreases with θ, becoming much lower than the 5d KK scale governing the UV completion of this model. We construct two different classes of domain walls interpolating between adjacent vacua. We identify a number of instability modes — nucleation of domain walls, bulk Casimir forces, and condensation of tachyonic winding modes in the bulk — which indicate that the metastable branch eventually becomes unstable. Finally, we discuss two phenomena which can arise when the axion is dynamical; axion-driven inflation, and axion strings.

This is a preview of subscription content, access via your institution.

References

  1. L. Giusti, S. Petrarca and B. Taglienti, Theta dependence of the vacuum energy in the SU(3) gauge theory from the lattice, Phys. Rev. D 76 (2007) 094510 [arXiv:0705.2352] [INSPIRE].

    ADS  Google Scholar 

  2. E. Witten, Large-N chiral dynamics, Annals Phys. 128 (1980) 363 [INSPIRE].

    ADS  Article  Google Scholar 

  3. E. Witten, Theta dependence in the large-N limit of four-dimensional gauge theories, Phys. Rev. Lett. 81 (1998) 2862 [hep-th/9807109] [INSPIRE].

    MathSciNet  ADS  MATH  Article  Google Scholar 

  4. L. McAllister, E. Silverstein and A. Westphal, Gravity waves and linear inflation from axion monodromy, Phys. Rev. D 82 (2010) 046003 [arXiv:0808.0706] [INSPIRE].

    ADS  Google Scholar 

  5. E. Silverstein and A. Westphal, Monodromy in the CMB: gravity waves and string inflation, Phys. Rev. D 78 (2008) 106003 [arXiv:0803.3085] [INSPIRE].

    ADS  Google Scholar 

  6. N. Kaloper and L. Sorbo, A natural framework for chaotic inflation, Phys. Rev. Lett. 102 (2009)121301 [arXiv:0811.1989] [INSPIRE].

    ADS  Article  Google Scholar 

  7. M. Berg, E. Pajer and S. Sjors, Dantes Inferno, Phys. Rev. D 81 (2010) 103535 [arXiv:0912.1341] [INSPIRE].

    ADS  Google Scholar 

  8. N. Kaloper, A. Lawrence and L. Sorbo, An ignoble approach to large field inflation, JCAP 03 (2011) 023 [arXiv:1101.0026] [INSPIRE].

    ADS  Article  Google Scholar 

  9. D.H. Lyth, What would we learn by detecting a gravitational wave signal in the cosmic microwave background anisotropy?, Phys. Rev. Lett. 78 (1997) 1861 [hep-ph/9606387] [INSPIRE].

    ADS  Article  Google Scholar 

  10. G. Efstathiou and K.J. Mack, The Lyth bound revisited, JCAP 05 (2005) 008 [astro-ph/0503360] [INSPIRE].

    ADS  Article  Google Scholar 

  11. X. Dong, B. Horn, E. Silverstein and A. Westphal, Simple exercises to flatten your potential, Phys. Rev. D 84 (2011) 026011 [arXiv:1011.4521] [INSPIRE].

    ADS  Google Scholar 

  12. A. Arvanitaki, S. Dimopoulos, S. Dubovsky, N. Kaloper and J. March-Russell, String axiverse, Phys. Rev. D 81 (2010) 123530 [arXiv:0905.4720] [INSPIRE].

    ADS  Google Scholar 

  13. A. Arvanitaki and S. Dubovsky, Exploring the string axiverse with precision black hole physics, Phys. Rev. D 83 (2011) 044026 [arXiv:1004.3558] [INSPIRE].

    ADS  Google Scholar 

  14. S. Dubovsky and V. Gorbenko, Black hole portal into hidden valleys, Phys. Rev. D 83 (2011) 106002 [arXiv:1012.2893] [INSPIRE].

    ADS  Google Scholar 

  15. S. Panda, Y. Sumitomo and S.P. Trivedi, Axions as quintessence in string theory, Phys. Rev. D 83 (2011) 083506 [arXiv:1011.5877] [INSPIRE].

    ADS  Google Scholar 

  16. M.A. Shifman, Domain walls and decay rate of the excited vacua in the large-N Yang-Mills theory, Phys. Rev. D 59 (1999) 021501 [hep-th/9809184] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  17. J. Barbon and A. Pasquinucci, Aspects of instanton dynamics in AdS/CFT duality, Phys. Lett. B 458 (1999) 288 [hep-th/9904190] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  18. S. Kachru, J. Pearson and H.L. Verlinde, Brane/flux annihilation and the string dual of a nonsupersymmetric field theory, JHEP 06 (2002) 021 [hep-th/0112197] [INSPIRE].

    MathSciNet  ADS  Article  Google Scholar 

  19. E. Witten, Anti-de Sitter space, thermal phase transition and confinement in gauge theories, Adv. Theor. Math. Phys. 2 (1998) 505 [hep-th/9803131] [INSPIRE].

    MathSciNet  MATH  Google Scholar 

  20. J. Polchinski, Cambridge Monographs on Mathematical Physics. Vol. 2: String theory: superstring theory and beyond, Cambridge University Press, Cambridge U.K. (1998).

    Google Scholar 

  21. G.T. Horowitz, Tachyon condensation and black strings, JHEP 08 (2005) 091 [hep-th/0506166] [INSPIRE].

    MathSciNet  ADS  Article  Google Scholar 

  22. R. Güven, Black p-brane solutions of D = 11 supergravity theory, Phys. Lett. B 276 (1992) 49 [INSPIRE].

    ADS  Google Scholar 

  23. M. Duff, TASI lectures on branes, black holes and anti-de Sitter space, hep-th/9912164 [INSPIRE].

  24. J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Adv. Theor. Math. Phys. 2 (1998) 231 [Int. J. Theor. Phys. 38 (1999) 1133 ] [hep-th/9711200] [INSPIRE].

  25. N. Itzhaki, J.M. Maldacena, J. Sonnenschein and S. Yankielowicz, Supergravity and the large-N limit of theories with sixteen supercharges, Phys. Rev. D 58 (1998) 046004 [hep-th/9802042] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  26. G.T. Horowitz and R.C. Myers, The AdS/CFT correspondence and a new positive energy conjecture for general relativity, Phys. Rev. D 59 (1998) 026005 [hep-th/9808079] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  27. S. Hawking and G.T. Horowitz, The gravitational Hamiltonian, action, entropy and surface terms, Class. Quant. Grav. 13 (1996) 1487 [gr-qc/9501014] [INSPIRE].

    MathSciNet  ADS  MATH  Article  Google Scholar 

  28. D.J. Gross and H. Ooguri, Aspects of large-N gauge theory dynamics as seen by string theory, Phys. Rev. D 58 (1998) 106002 [hep-th/9805129] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  29. C. Csáki, H. Ooguri, Y. Oz and J. Terning, Glueball mass spectrum from supergravity, JHEP 01 (1999) 017 [hep-th/9806021] [INSPIRE].

    ADS  Article  Google Scholar 

  30. R. de Mello Koch, A. Jevicki, M. Mihailescu and J.P. Nunes, Evaluation of glueball masses from supergravity, Phys. Rev. D 58 (1998) 105009 [hep-th/9806125] [INSPIRE].

    ADS  Google Scholar 

  31. S.R. Coleman, The fate of the false vacuum. 1. Semiclassical theory, Phys. Rev. D 15 (1977) 2929 [Erratum ibid. D 16 (1977) 1248] [INSPIRE].

  32. A. Adams, X. Liu, J. McGreevy, A. Saltman and E. Silverstein, Things fall apart: topology change from winding tachyons, JHEP 10 (2005) 033 [hep-th/0502021] [INSPIRE].

    MathSciNet  ADS  Article  Google Scholar 

  33. M. Kruczenski and A. Lawrence, Random walks and the Hagedorn transition, JHEP 07 (2006)031 [hep-th/0508148] [INSPIRE].

    MathSciNet  ADS  Article  Google Scholar 

  34. L. Randall and R. Sundrum, An alternative to compactification, Phys. Rev. Lett. 83 (1999) 4690 [hep-th/9906064] [INSPIRE].

    MathSciNet  ADS  MATH  Article  Google Scholar 

  35. H.L. Verlinde, Holography and compactification, Nucl. Phys. B 580 (2000) 264 [hep-th/9906182] [INSPIRE].

    MathSciNet  ADS  Article  Google Scholar 

  36. A. Vilenkin and A. Everett, Cosmic strings and domain walls in models with Goldstone and PseudoGoldstone bosons, Phys. Rev. Lett. 48 (1982) 1867 [INSPIRE].

    ADS  Article  Google Scholar 

  37. A. D’Adda, M. Lüscher and P. Di Vecchia, A 1/n expandable series of nonlinear σ-models with instantons, Nucl. Phys. B 146 (1978) 63 [INSPIRE].

    ADS  Article  Google Scholar 

  38. E. Witten, Instantons, the quark model and the 1/n expansion, Nucl. Phys. B 149 (1979) 285 [INSPIRE].

    ADS  Article  Google Scholar 

  39. S.-J. Rey, S. Theisen and J.-T. Yee, Wilson-Polyakov loop at finite temperature in large-N gauge theory and anti-de Sitter supergravity, Nucl. Phys. B 527 (1998) 171 [hep-th/9803135] [INSPIRE].

    MathSciNet  ADS  Article  Google Scholar 

  40. A. Brandhuber, N. Itzhaki, J. Sonnenschein and S. Yankielowicz, Wilson loops in the large-N limit at finite temperature, Phys. Lett. B 434 (1998) 36 [hep-th/9803137] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  41. A. Brandhuber, N. Itzhaki, J. Sonnenschein and S. Yankielowicz, Wilson loops, confinement and phase transitions in large-N gauge theories from supergravity, JHEP 06 (1998) 001 [hep-th/9803263] [INSPIRE].

    MathSciNet  ADS  Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew M. Roberts.

Additional information

ArXiv ePrint: 1105.3740

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Dubovsky, S., Lawrence, A. & Roberts, M.M. Axion monodromy in a model of holographic gluodynamics. J. High Energ. Phys. 2012, 53 (2012). https://doi.org/10.1007/JHEP02(2012)053

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP02(2012)053

Keywords

  • Gauge-gravity correspondence
  • AdS-CFT Correspondence
  • Nonperturbative
  • Effects