Symmetry energy and universality classes of holographic QCD

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.


We study nuclear symmetry energy of dense matter using holographic QCD. We calculate it in a various holographic QCD models and show that the scaling index of the symmetry energy in dense medium is almost invariant under the smooth deformation of the metric as well as the embedding shape of the probe brane. We find that the scaling index depends only on the dimensionality of the branes and space-time. Therefore the scaling index of the symmetry energy characterizes the universality classes of holographic QCD models. We suggest that the scaling index might be also related to the non-fermi liquid behavior of the interacting nucleons.

This is a preview of subscription content, log in to check access.


  1. [1]

    P. Danielewicz, R. Lacey and W.G. Lynch, Determination of the equation of state of dense matter, Science 298 (2002) 1592 [nucl-th/0208016] [INSPIRE].

    ADS  Article  Google Scholar 

  2. [2]

    A.W. Steiner, M. Prakash, J.M. Lattimer and P.J. Ellis, Isospin asymmetry in nuclei and neutron stars, Phys. Rept. 411 (2005) 325 [nucl-th/0410066] [INSPIRE].

    ADS  Article  Google Scholar 

  3. [3]

    B.-A. Li, L.-W. Chen and C.M. Ko, Recent progress and new challenges in isospin physics with heavy-ion reactions, Phys. Rept. 464 (2008) 113 [arXiv:0804.3580] [INSPIRE].

    ADS  Article  Google Scholar 

  4. [4]

    C. Xu and B.-A. Li, Understanding the major uncertainties in the nuclear symmetry energy at suprasaturation densities, Phys. Rev. C 81 (2010) 064612 [arXiv:0910.4803] [INSPIRE].

    ADS  Google Scholar 

  5. [5]

    J.V. Shetty and S.J. Yennello, Nuclear symmetry energy: an experimental overview, Pramana 75 (2010) 259 [arXiv:1002.0313] [INSPIRE].

    ADS  Article  Google Scholar 

  6. [6]

    M. Di Toro, V. Baran, M. Colonna and V. Greco, Probing the nuclear symmetry energy with heavy ion collisions, J. Phys. G 37 (2010) 083101 [arXiv:1003.2957] [INSPIRE].

    ADS  Google Scholar 

  7. [7]

    H.K. Lee, B.-Y. Park and M. Rho, Half-skyrmions, tensor forces and symmetry energy in cold dense matter, Phys. Rev. C 83 (2011) 025206 [Erratum ibid. C 84 (2011) 059902] [arXiv:1005.0255] [INSPIRE].

    ADS  Google Scholar 

  8. [8]

    Z. Xiao, B.-A. Li, L.-W. Chen, G.-C. Yong and M. Zhang, Circumstantial evidence for a soft nuclear symmetry energy at suprasaturation densities, Phys. Rev. Lett. 102 (2009) 062502 [INSPIRE].

    ADS  Article  Google Scholar 

  9. [9]

    L.-W. Chen, C.M. Ko and B.-A. Li, Determination of the stiffness of the nuclear symmetry energy from isospin diffusion, Phys. Rev. Lett. 94 (2005) 032701 [nucl-th/0407032] [INSPIRE].

    ADS  Article  Google Scholar 

  10. [10]

    Y. Kim, Y. Seo, I.J. Shin and S.-J. Sin, Symmetry energy of dense matter in holographic QCD, JHEP 06 (2011) 011 [arXiv:1011.0868] [INSPIRE].

    ADS  Article  Google Scholar 

  11. [11]

    J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Int. J. Theor. Phys. 38 (1999) 1133 [Adv. Theor. Math. Phys. 2 (1998) 231] [hep-th/9711200] [INSPIRE].

    MathSciNet  Article  Google Scholar 

  12. [12]

    S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from noncritical string theory, Phys. Lett. B 428 (1998) 105 [hep-th/9802109] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  13. [13]

    E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [INSPIRE].

    MathSciNet  ADS  MATH  Google Scholar 

  14. [14]

    M. Kruczenski, D. Mateos, R.C. Myers and D.J. Winters, Towards a holographic dual of large-N c QCD, JHEP 05 (2004) 041 [hep-th/0311270] [INSPIRE].

    ADS  Article  Google Scholar 

  15. [15]

    T. Sakai and S. Sugimoto, Low energy hadron physics in holographic QCD, Prog. Theor. Phys. 113 (2005) 843 [hep-th/0412141] [INSPIRE].

    ADS  MATH  Article  Google Scholar 

  16. [16]

    J. Erlich, E. Katz, D.T. Son and M.A. Stephanov, QCD and a holographic model of hadrons, Phys. Rev. Lett. 95 (2005) 261602 [hep-ph/0501128] [INSPIRE].

    ADS  Article  Google Scholar 

  17. [17]

    L. Da Rold and A. Pomarol, Chiral symmetry breaking from five dimensional spaces, Nucl. Phys. B 721 (2005) 79 [hep-ph/0501218] [INSPIRE].

    ADS  Article  Google Scholar 

  18. [18]

    Y. Seo and S.-J. Sin, Baryon mass in medium with holographic QCD, JHEP 04 (2008) 010 [arXiv:0802.0568] [INSPIRE].

    ADS  Article  Google Scholar 

  19. [19]

    Y. Kim, Y. Seo and S.-J. Sin, Nuclear matter to strange matter transition in holographic QCD, JHEP 03 (2010) 074 [arXiv:0911.3685] [INSPIRE].

    ADS  Article  Google Scholar 

  20. [20]

    E. Witten, Baryons and branes in Anti-de Sitter space, JHEP 07 (1998) 006 [hep-th/9805112] [INSPIRE].

    ADS  Google Scholar 

  21. [21]

    S.S. Gubser, Dilaton driven confinement, hep-th/9902155 [INSPIRE].

  22. [22]

    N.J. Evans, S.D. Hsu and M. Schwetz, Chiral perturbation theory, large-N c and the ηmass, Phys. Lett. B 382 (1996) 138 [hep-ph/9605267] [INSPIRE].

    ADS  Google Scholar 

  23. [23]

    A. Kehagias and K. Sfetsos, On running couplings in gauge theories from type IIB supergravity, Phys. Lett. B 454 (1999) 270 [hep-th/9902125] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  24. [24]

    Y. Seo, J.P. Shock, S.-J. Sin and D. Zoakos, Holographic hadrons in a confining finite density medium, JHEP 03 (2010) 115 [arXiv:0912.4013] [INSPIRE].

    ADS  Article  Google Scholar 

  25. [25]

    H. Georgi, Unparticle physics, Int. J. Mod. Phys. A 25 (2010) 573 [INSPIRE].

    ADS  Google Scholar 

  26. [26]

    T. Faulkner, H. Liu, J. McGreevy and D. Vegh, Emergent quantum criticality, Fermi surfaces and AdS 2, Phys. Rev. D 83 (2011) 125002 [arXiv:0907.2694] [INSPIRE].

    ADS  Google Scholar 

  27. [27]

    S.-S. Lee, A non-Fermi liquid from a charged black hole: a critical Fermi ball, Phys. Rev. D 79 (2009) 086006 [arXiv:0809.3402] [INSPIRE].

    ADS  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Sang-Jin Sin.

Additional information

ArXiv ePrint: 1201.0459

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Seo, Y., Sin, S. Symmetry energy and universality classes of holographic QCD. J. High Energ. Phys. 2012, 39 (2012).

Download citation


  • Gauge-gravity correspondence
  • Holography and quark-gluon plasmas
  • Holography and condensed matter physics (AdS/CMT)