Skip to main content
Log in

Transport coefficients, membrane couplings and universality at extremality

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

We present an efficient method for computing the zero frequency limit of transport coefficients in strongly coupled field theories described holographically by higher derivative gravity theories. Hydrodynamic parameters such as shear viscosity and conductivity can be obtained by computing residues of poles of the off-shell lagrangian density. We clarify in which sense these coefficients can be thought of as effective couplings at the horizon, and present analytic, Wald-like formulae for the shear viscosity and conductivity in a large class of general higher derivative lagrangians. We show how to apply our methods to systems at zero temperature but finite chemical potential. Our results imply that such theories satisfy η/s = 1/4π universally in the Einstein-Maxwell sector. Likewise, the zero frequency limit of the real part of the conductivity for such systems is shown to be universally zero, and we conjecture that higher derivative corrections in this sector do not modify this result to all orders in perturbation theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Adv. Theor. Math. Phys. 2 (1998) 231 [Int. J. Theor. Phys. 38 (1999) 1113] [hep-th/9711200] [SPIRES].

    MATH  MathSciNet  ADS  Google Scholar 

  2. O. Aharony, S.S. Gubser, J.M. Maldacena, H. Ooguri and Y. Oz, Large-N field theories, string theory and gravity, Phys. Rept. 323 (2000) 183 [hep-th/9905111] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  3. S.A. Hartnoll, Lectures on holographic methods for condensed matter physics, Class. Quant. Grav. 26 (2009) 224002 [arXiv:0903.3246] [SPIRES].

    Article  Google Scholar 

  4. S.S. Gubser, Using string theory to study the quark-gluon plasma: progress and perils, Nucl. Phys. A 830 (2009) 657c–664c [arXiv:0907.4808] [SPIRES].

    MathSciNet  Google Scholar 

  5. S.S. Gubser and A. Karch, From gauge-string duality to strong interactions: a Pedestrian’s Guide, Ann. Rev. Nucl. Part. Sci. 59 (2009) 145 [arXiv:0901.0935] [SPIRES].

    Article  Google Scholar 

  6. S. Bhattacharyya, V.E. Hubeny, S. Minwalla and M. Rangamani, Nonlinear Fluid Dynamics from Gravity, JHEP 02 (2008) 045 [arXiv:0712.2456] [SPIRES].

    Article  ADS  Google Scholar 

  7. H.B. Meyer, Transport properties of the quark-gluon plasma from lattice QCD, Nucl. Phys. A 830 (2009) 641c [arXiv:0907.4095] [SPIRES].

    Google Scholar 

  8. G. Policastro, D.T. Son and A.O. Starinets, The shear viscosity of strongly coupled N = 4 supersymmetric Yang-Mills plasma, Phys. Rev. Lett. 87 (2001) 081601 [hep-th/0104066] [SPIRES].

    Article  ADS  Google Scholar 

  9. G. Policastro, D.T. Son and A.O. Starinets, From AdS/CFT correspondence to hydrodynamics, JHEP 09 (2002) 043 [hep-th/0205052] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  10. G. Policastro, D.T. Son and A.O. Starinets, From AdS/CFT correspondence to hydrodynamics. II: Sound waves, JHEP 12 (2002) 054 [hep-th/0210220] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  11. D.T. Son and A.O. Starinets, Minkowski-space correlators in AdS/CFT correspondence: Recipe and applications, JHEP 09 (2002) 042 [hep-th/0205051] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  12. K. Skenderis and B.C. van Rees, Real-time gauge/gravity duality, Phys. Rev. Lett. 101 (2008) 081601 [arXiv:0805.0150] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  13. A. Buchel, J.T. Liu and A.O. Starinets, Coupling constant dependence of the shear viscosity in N = 4 supersymmetric Yang-Mills theory, Nucl. Phys. B 707 (2005) 56 [hep-th/0406264] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  14. P. Benincasa and A. Buchel, Transport properties of N = 4 supersymmetric Yang-Mills theory at finite coupling, JHEP 01 (2006) 103 [hep-th/0510041] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  15. A. Buchel and M. Paulos, Relaxation time of a CFT plasma at finite coupling, Nucl. Phys. B 805 (2008) 59 [arXiv:0806.0788] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  16. R.C. Myers, M.F. Paulos and A. Sinha, Quantum corrections to η/s, Phys. Rev. D 79 (2009) 041901 [arXiv:0806.2156] [SPIRES].

    ADS  Google Scholar 

  17. A. Buchel and M. Paulos, Second order hydrodynamics of a CFT plasma from boost invariant expansion, Nucl. Phys. B 810 (2009) 40 [arXiv:0808.1601] [SPIRES].

    Article  ADS  Google Scholar 

  18. A. Buchel, R.C. Myers, M.F. Paulos and A. Sinha, Universal holographic hydrodynamics at finite coupling, Phys. Lett. B 669 (2008) 364 [arXiv:0808.1837] [SPIRES].

    ADS  Google Scholar 

  19. A. Sinha and R.C. Myers, The viscosity bound in string theory, Nucl. Phys. A 830 (2009) 295c–298c [arXiv:0907.4798] [SPIRES].

    Google Scholar 

  20. A. Buchel, R.C. Myers and A. Sinha, Beyond η/s = 1/4π, JHEP 03 (2009) 084 [arXiv:0812.2521] [SPIRES].

    Article  ADS  Google Scholar 

  21. N. Iqbal and H. Liu, Universality of the hydrodynamic limit in AdS/CFT and the membrane paradigm, Phys. Rev. D 79 (2009) 025023 [arXiv:0809.3808] [SPIRES].

    ADS  Google Scholar 

  22. K.S. Thorne, R.H. Price and D.A. Macdonald eds., Black Holes: The Membrane Paradigm, Yale University Press, New Haven U.S.A. (1986).

    Google Scholar 

  23. P. Kovtun, D.T. Son and A.O. Starinets, Viscosity in strongly interacting quantum field theories from black hole physics, Phys. Rev. Lett. 94 (2005) 111601 [hep-th/0405231] [SPIRES].

    Article  ADS  Google Scholar 

  24. A. Buchel, On universality of stress-energy tensor correlation functions in supergravity, Phys. Lett. B 609 (2005) 392 [hep-th/0408095] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  25. R.C. Myers, M.F. Paulos and A. Sinha, Holographic Hydrodynamics with a Chemical Potential, JHEP 06 (2009) 006 [arXiv:0903.2834] [SPIRES].

    Article  ADS  Google Scholar 

  26. N. Banerjee and S. Dutta, Higher Derivative Corrections to Shear Viscosity from Graviton’s Effective Coupling, JHEP 03 (2009) 116 [arXiv:0901.3848] [SPIRES].

    Article  ADS  Google Scholar 

  27. R. Brustein and A.J.M. Medved, The ratio of shear viscosity to entropy density in generalized theories of gravity, Phys. Rev. D 79 (2009) 021901 [arXiv:0808.3498] [SPIRES].

    ADS  Google Scholar 

  28. R. Brustein, D. Gorbonos and M. Hadad, Wald’s entropy is equal to a quarter of the horizon area in units of the effective gravitational coupling, Phys. Rev. D 79 (2009) 044025 [arXiv:0712.3206] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  29. T. Faulkner, H. Liu, J. McGreevy and D. Vegh, Emergent quantum criticality,Fermi surfaces and AdS 2, arXiv:0907.2694 [SPIRES].

  30. M. Edalati, J.I. Jottar and R.G. Leigh, Transport Coefficients at Zero Temperature from Extremal Black Holes, JHEP 01 (2010) 018 [arXiv:0910.0645] [SPIRES].

    Article  Google Scholar 

  31. E. Imeroni and A. Sinha, Non-relativistic metrics with extremal limits, JHEP 09 (2009) 096 [arXiv:0907.1892] [SPIRES].

    Article  Google Scholar 

  32. P. Kovtun and A. Ritz, Universal conductivity and central charges, Phys. Rev. D 78 (2008) 066009 [arXiv:0806.0110] [SPIRES].

    ADS  Google Scholar 

  33. A. Ritz and J. Ward, Weyl corrections to holographic conductivity, Phys. Rev. D 79 (2009) 066003 [arXiv:0811.4195] [SPIRES].

    ADS  Google Scholar 

  34. M. Brigante, H. Liu, R.C. Myers, S. Shenker and S. Yaida, Viscosity Bound Violation in Higher Derivative Gravity, Phys. Rev. D 77 (2008) 126006 [arXiv:0712.0805] [SPIRES].

    ADS  Google Scholar 

  35. R.M. Wald, Black hole entropy is the Noether charge, Phys. Rev. D 48 (1993) 3427 [gr-qc/9307038] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  36. Y. Kats and P. Petrov, Effect of curvature squared corrections in AdS on the viscosity of the dual gauge theory, JHEP 01 (2009) 044 [arXiv:0712.0743] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  37. A. Buchel, Resolving disagreement for eta/s in a CFT plasma at finite coupling, Nucl. Phys. B 803 (2008) 166 [arXiv:0805.2683] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  38. S.A. Hartnoll, P.K. Kovtun, M. Muller and S. Sachdev, Theory of the Nernst effect near quantum phase transitions in condensed matter and in dyonic black holes, Phys. Rev. B 76 (2007) 144502 [arXiv:0706.3215] [SPIRES].

    Article  ADS  Google Scholar 

  39. A. Adams, K. Balasubramanian and J. McGreevy, Hot Spacetimes for Cold Atoms, JHEP 11 (2008) 059 [arXiv:0807.1111] [SPIRES].

    Article  ADS  Google Scholar 

  40. S. Kachru, X. Liu and M. Mulligan, Gravity Duals of Lifshitz-like Fixed Points, Phys. Rev. D 78 (2008) 106005 [arXiv:0808.1725] [SPIRES].

    MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miguel F. Paulos.

Additional information

ArXiv ePrint: 0910.4602

Rights and permissions

Reprints and permissions

About this article

Cite this article

Paulos, M.F. Transport coefficients, membrane couplings and universality at extremality. J. High Energ. Phys. 2010, 67 (2010). https://doi.org/10.1007/JHEP02(2010)067

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP02(2010)067

Keywords

Navigation