Skip to main content

Advertisement

SpringerLink
  • Journal of High Energy Physics
  • Journal Aims and Scope
  • Submit to this journal
Baryonic Higgs and dark matter
Download PDF
Your article has downloaded

Similar articles being viewed by others

Slider with three articles shown per slide. Use the Previous and Next buttons to navigate the slides or the slide controller buttons at the end to navigate through each slide.

Matter and dark matter asymmetry from a composite Higgs model

26 April 2021

M. Ahmadvand

Natural dark matter and light bosons with an alternative left-right symmetry

20 April 2020

Mariana Frank, Benjamin Fuks & Özer Özdal

Self-interacting dark matter with a vector mediator: kinetic mixing with the U 1 B − L 3 $$ \mathrm{U}{(1)}_{{\left(B-L\right)}_3} $$ gauge boson

05 March 2019

Ayuki Kamada, Masaki Yamada & Tsutomu T. Yanagida

Light mediators in anomaly free U (1)X models. Part II. Constraints on dark gauge bosons

31 October 2019

F. C. Correia & Svjetlana Fajfer

Higgs portals for thermal Dark Matter. EFT perspectives and the NMSSM

12 April 2018

Sebastian Baum, Marcela Carena, … Carlos E.M. Wagner

Neutrino masses in a two Higgs doublet model with a U(1) gauge symmetry

19 April 2019

Daniel A. Camargo, Alex G. Dias, … Farinaldo S. Queiroz

2HDM singlet portal to dark matter

21 January 2021

M. E. Cabrera, J. A. Casas, … S. Robles

Forbidden scalar dark matter and dark Higgses

07 April 2022

George N. Wojcik & Thomas G. Rizzo

On Minimal Dark Matter coupled to the Higgs

03 April 2018

Laura Lopez Honorez, Michel H. G. Tytgat, … Bryan Zaldivar

Download PDF
  • Regular Article - Theoretical Physics
  • Open Access
  • Published: 18 February 2021

Baryonic Higgs and dark matter

  • Pavel Fileviez Pérez1,
  • Clara Murgui2 &
  • Alexis D. Plascencia1 

Journal of High Energy Physics volume 2021, Article number: 163 (2021) Cite this article

  • 143 Accesses

  • 2 Citations

  • Metrics details

A preprint version of the article is available at arXiv.

Abstract

We discuss the correlation between dark matter and Higgs decays in gauge theories where the dark matter is predicted from anomaly cancellation. In these theories, the Higgs responsible for the breaking of the gauge symmetry generates the mass for the dark matter candidate. We investigate the Higgs decays in the minimal gauge theory for Baryon number. After imposing the dark matter density and direct detection constraints, we find that the new Higgs can have a large branching ratio into two photons or into dark matter. Furthermore, we discuss the production channels and the unique signatures at the Large Hadron Collider.

Download to read the full article text

Working on a manuscript?

Avoid the common mistakes

References

  1. V. Silveira and A. Zee, Scalar phantoms, Phys. Lett. B 161 (1985) 136 [INSPIRE].

    Article  ADS  Google Scholar 

  2. J. McDonald, Gauge singlet scalars as cold dark matter, Phys. Rev. D 50 (1994) 3637 [hep-ph/0702143] [INSPIRE].

  3. B. Patt and F. Wilczek, Higgs-field portal into hidden sectors, hep-ph/0605188 [INSPIRE].

  4. ATLAS collaboration, Search for invisible Higgs boson decays with vector boson fusion signatures with the ATLAS detector using an integrated luminosity of 139 fb−1, ATLAS-CONF-2020-008 (2020).

  5. ATLAS collaboration, Combination of searches for invisible Higgs boson decays with the ATLAS experiment, Phys. Rev. Lett. 122 (2019) 231801 [arXiv:1904.05105].

  6. CMS collaboration, Search for invisible decays of a Higgs boson produced through vector boson fusion in proton-proton collisions at \( \sqrt{s} \) = 13 TeV, Phys. Lett. B 793 (2019) 520 [arXiv:1809.05937] [INSPIRE].

  7. P. Fileviez Perez, S. Ohmer and H.H. Patel, Minimal theory for lepto-baryons, Phys. Lett. B 735 (2014) 283 [arXiv:1403.8029] [INSPIRE].

    Article  ADS  Google Scholar 

  8. P. Fileviez Perez and M.B. Wise, Breaking local baryon and lepton number at the TeV scale, JHEP 08 (2011) 068 [arXiv:1106.0343] [INSPIRE].

    Article  Google Scholar 

  9. M. Duerr, P. Fileviez Perez and M.B. Wise, Gauge theory for baryon and lepton numbers with leptoquarks, Phys. Rev. Lett. 110 (2013) 231801 [arXiv:1304.0576] [INSPIRE].

    Article  ADS  Google Scholar 

  10. A. Ilnicka, T. Robens and T. Stefaniak, Constraining extended scalar sectors at the LHC and beyond, Mod. Phys. Lett. A 33 (2018) 1830007 [arXiv:1803.03594] [INSPIRE].

    Article  ADS  Google Scholar 

  11. P. Fileviez Pérez, E. Golias, R.-H. Li, C. Murgui and A.D. Plascencia, Anomaly-free dark matter models, Phys. Rev. D 100 (2019) 015017 [arXiv:1904.01017] [INSPIRE].

  12. S. Ohmer and H.H. Patel, Leptobaryons as Majorana dark matter, Phys. Rev. D 92 (2015) 055020 [arXiv:1506.00954] [INSPIRE].

  13. M. Duerr, P.F. Pérez and J. Smirnov, Baryonic Higgs at the LHC, JHEP 09 (2017) 093 [arXiv:1704.03811] [INSPIRE].

    Article  ADS  Google Scholar 

  14. M. Duerr, A. Grohsjean, F. Kahlhoefer, B. Penning, K. Schmidt-Hoberg and C. Schwanenberger, Hunting the dark Higgs, JHEP 04 (2017) 143 [arXiv:1701.08780] [INSPIRE].

    Article  ADS  Google Scholar 

  15. M. Duerr and P. Fileviez Perez, Theory for baryon number and dark matter at the LHC, Phys. Rev. D 91 (2015) 095001 [arXiv:1409.8165] [INSPIRE].

  16. P.F. Pérez, E. Golias, C. Murgui and A.D. Plascencia, The Higgs and leptophobic force at the LHC, JHEP 07 (2020) 087 [arXiv:2003.09426] [INSPIRE].

    Article  ADS  Google Scholar 

  17. P. Fileviez Pérez, E. Golias, R.-H. Li and C. Murgui, Leptophobic dark matter and the baryon number violation scale, Phys. Rev. D 99 (2019) 035009 [arXiv:1810.06646] [INSPIRE].

  18. P. Fileviez Perez and A.D. Plascencia, Electric dipole moments, new forces and dark matter, arXiv:2008.09116 [INSPIRE].

  19. Planck collaboration, Planck 2018 results. VI. Cosmological parameters, Astron. Astrophys. 641 (2020) A6 [arXiv:1807.06209] [INSPIRE].

  20. XENON collaboration, Dark matter search results from a one ton-year exposure of XENON1T, Phys. Rev. Lett. 121 (2018) 111302 [arXiv:1805.12562] [INSPIRE].

  21. XENON collaboration, Physics reach of the XENON1T dark matter experiment, JCAP 04 (2016) 027 [arXiv:1512.07501] [INSPIRE].

  22. G. Bélanger, F. Boudjema, A. Goudelis, A. Pukhov and B. Zaldivar, MicrOMEGAs5.0: Freeze-in, Comput. Phys. Commun. 231 (2018) 173 [arXiv:1801.03509] [INSPIRE].

  23. ATLAS collaboration, Search for new phenomena in events with jets and missing transverse momentum in pp collisions at \( \sqrt{s} \) = 13 TeV with the ATLAS detector, arXiv:2102.01444.

  24. M. Hoferichter, P. Klos, J. Menéndez and A. Schwenk, Improved limits for Higgs-portal dark matter from LHC searches, Phys. Rev. Lett. 119 (2017) 181803 [arXiv:1708.02245] [INSPIRE].

    Article  ADS  Google Scholar 

  25. XENON collaboration, First dark matter search results from the XENON1T experiment, Phys. Rev. Lett. 119 (2017) 181301 [arXiv:1705.06655] [INSPIRE].

  26. J. Billard, L. Strigari and E. Figueroa-Feliciano, Implication of neutrino backgrounds on the reach of next generation dark matter direct detection experiments, Phys. Rev. D 89 (2014) 023524 [arXiv:1307.5458] [INSPIRE].

  27. J. Alwall et al., The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations, JHEP 07 (2014) 079 [arXiv:1405.0301] [INSPIRE].

  28. A.D. Martin, W.J. Stirling, R.S. Thorne and G. Watt, Parton distributions for the LHC, Eur. Phys. J. C 63 (2009) 189 [arXiv:0901.0002] [INSPIRE].

    Article  ADS  Google Scholar 

  29. ATLAS collaboration, RECAST framework reinterpretation of an ATLAS dark matter search constraining a model of a dark Higgs boson decaying to two b-quarks, ATL-PHYS-PUB-2019-032 (2019).

  30. H.H. Patel, Package-X: a Mathematica package for the analytic calculation of one-loop integrals, Comput. Phys. Commun. 197 (2015) 276 [arXiv:1503.01469] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Physics Department and Center for Education and Research in Cosmology and Astrophysics, (CERCA), Case Western Reserve University, Cleveland, OH, 44106, USA

    Pavel Fileviez Pérez & Alexis D. Plascencia

  2. Walter Burke Institute for Theoretical Physics, California Institute of Technology, Pasadena, CA, 91125, USA

    Clara Murgui

Authors
  1. Pavel Fileviez Pérez
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Clara Murgui
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Alexis D. Plascencia
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Clara Murgui.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

ArXiv ePrint: 2012.06599

Rights and permissions

Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pérez, P.F., Murgui, C. & Plascencia, A.D. Baryonic Higgs and dark matter. J. High Energ. Phys. 2021, 163 (2021). https://doi.org/10.1007/JHEP02(2021)163

Download citation

  • Received: 23 December 2020

  • Accepted: 06 January 2021

  • Published: 18 February 2021

  • DOI: https://doi.org/10.1007/JHEP02(2021)163

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Beyond Standard Model
  • Cosmology of Theories beyond the SM
Download PDF

Working on a manuscript?

Avoid the common mistakes

Advertisement

Over 10 million scientific documents at your fingertips

Switch Edition
  • Academic Edition
  • Corporate Edition
  • Home
  • Impressum
  • Legal information
  • Privacy statement
  • California Privacy Statement
  • How we use cookies
  • Manage cookies/Do not sell my data
  • Accessibility
  • FAQ
  • Contact us
  • Affiliate program

Not affiliated

Springer Nature

© 2023 Springer Nature Switzerland AG. Part of Springer Nature.